Define Circle Knowing Two Points and ARC LENGTH Only.

Ryank
Messages
4
Reaction score
0
I am having trouble doing exactly what the title says. I have two points and the arc length between them (this is a bending beam type of a situation). Essentially I know where the ends of the beam are and how long the bent beam is and I need to get the equation of the circle. And yes I realize there would be two distinct solutions depending on positive of negative curvature. Any help would be amazing, thanks!
 
Mathematics news on Phys.org
Ryank said:
I am having trouble doing exactly what the title says. I have two points and the arc length between them (this is a bending beam type of a situation). Essentially I know where the ends of the beam are and how long the bent beam is and I need to get the equation of the circle. And yes I realize there would be two distinct solutions depending on positive of negative curvature. Any help would be amazing, thanks!

What is the context of the question? Could you post a sketch? Thanks.
 
There doesn't really need to be a context. You know the length of a chord on the circle and the length of the arc segment between them. I did some digging and did finally manage to find two solutions. One uses Newton's approximation method and the other uses and taylor expansion:

http://norman.rasmussen.co.za/24/radius-from-arc-and-chord-length/
http://www.mathforum.com/dr.math/faq/faq.circle.segment.html#1
 
Last edited by a moderator:
Looks like case 1 from Dr. Math that requires Newton's Method is the most straightforward.
 
Last edited:
Perhaps this sketch will help, it's basic trigonometry.

Since you have fixed two points on the circumference you not only know the arc length you also know the chord length.
 

Attachments

  • circle.jpg
    circle.jpg
    10.5 KB · Views: 572
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top