MHB Definite Integral #2: Prove \[\pi/2 \text{sech}(\pi/2)\]

  • Thread starter Thread starter sbhatnagar
  • Start date Start date
  • Tags Tags
    Integral
sbhatnagar
Messages
87
Reaction score
0
Prove that

\[\int_0^{\pi/2}\cos(\ln(\tan(x)))dx=\frac{\pi}{2} \text{sech} \left(\frac{\pi}{2}\right)\]
 
Mathematics news on Phys.org
Let $u = \ln{\tan{x}}$. Then we have $x = \arctan{(e^u)}$ and:

$$\mathrm{d} x = \frac{1}{e^u + e^{-u}} ~ \mathrm{d} u = \frac{1}{2} \mathrm{sech}{(u)} ~ \mathrm{d} u$$

We also have the new integral bounds $\ln{(\tan{0})} = -\infty$ and $\ln{(\tan{\frac{\pi}{2}})} = + \infty$. Substituting:

$$\displaystyle \int_0^{\frac{\pi}{2}} \cos{\ln{\tan{x}}} ~ \mathrm{d} x = \frac{1}{2} \int_{-\infty}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u$$

We note the integrand is even, as both $\cos{(u)}$ and $\mathrm{sech}{(u)}$ are even. Thus we have:

$$\frac{1}{2} \int_{-\infty}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u = \int_{0}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u$$

Now substitute $z =e^u$, so $u = \ln{z}$, and hence $\mathrm{d} u = \frac{1}{z} ~ \mathrm{d} z$. The bounds now become $e^0 = 1$ and $e^{+\infty} = + \infty$. Substituting:

$$\int_{0}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u = \int_{1}^{+\infty} \cos{(\ln{z})} \mathrm{sech}{(\ln{z})} \cdot \frac{1}{z} ~ \mathrm{d} z$$

Using the complex exponential form of the hyperbolic secant, we see that:

$$\mathrm{sech}{(\ln{z})} = \frac{2z}{z^2 + 1}$$

And thus, our integral becomes:

$$\int_{1}^{+\infty} \frac{2z \cos{\ln{z}} }{z^2 + 1} \cdot \frac{1}{z} ~ \mathrm{d} z = 2 \int_{1}^{+\infty} \frac{\cos{\ln{z}} }{z^2 + 1} ~ \mathrm{d} z$$

We know from the complex exponential form of $\cos$ that:

$$\cos{\ln{z}} = \frac{1}{2} \left ( z^{-i} + z^i \right )$$

Substituting this into the integrand, we get:

$$\int_{1}^{+\infty} \frac{z^{-i} + z^i}{z^2 + 1} ~ \mathrm{d} z$$

And I can't seem to get any farther. I'll try and keep going later, I need sleep. Am I even on the right track, anyway?
 
Bacterius said:
Let $u = \ln{\tan{x}}$. Then we have $x = \arctan{(e^u)}$ and:

$$\mathrm{d} x = \frac{1}{e^u + e^{-u}} ~ \mathrm{d} u = \frac{1}{2} \mathrm{sech}{(u)} ~ \mathrm{d} u$$

We also have the new integral bounds $\ln{(\tan{0})} = -\infty$ and $\ln{(\tan{\frac{\pi}{2}})} = + \infty$. Substituting:

$$\displaystyle \int_0^{\frac{\pi}{2}} \cos{\ln{\tan{x}}} ~ \mathrm{d} x = \frac{1}{2} \int_{-\infty}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u$$

We note the integrand is even, as both $\cos{(u)}$ and $\mathrm{sech}{(u)}$ are even. Thus we have:

$$\frac{1}{2} \int_{-\infty}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u = \int_{0}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u$$

Now substitute $z =e^u$, so $u = \ln{z}$, and hence $\mathrm{d} u = \frac{1}{z} ~ \mathrm{d} z$. The bounds now become $e^0 = 1$ and $e^{+\infty} = + \infty$. Substituting:

$$\int_{0}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u = \int_{1}^{+\infty} \cos{(\ln{z})} \mathrm{sech}{(\ln{z})} \cdot \frac{1}{z} ~ \mathrm{d} z$$

Using the complex exponential form of the hyperbolic secant, we see that:

$$\mathrm{sech}{(\ln{z})} = \frac{2z}{z^2 + 1}$$

And thus, our integral becomes:

$$\int_{1}^{+\infty} \frac{2z \cos{\ln{z}} }{z^2 + 1} \cdot \frac{1}{z} ~ \mathrm{d} z = 2 \int_{1}^{+\infty} \frac{\cos{\ln{z}} }{z^2 + 1} ~ \mathrm{d} z$$

We know from the complex exponential form of $\cos$ that:

$$\cos{\ln{z}} = \frac{1}{2} \left ( z^{-i} + z^i \right )$$

Substituting this into the integrand, we get:

$$\int_{1}^{+\infty} \frac{z^{-i} + z^i}{z^2 + 1} ~ \mathrm{d} z$$

And I can't seem to get any farther. I'll try and keep going later, I need sleep. Am I even on the right track, anyway?

Bacterius, my approach was a little different from yours. After using the substitution \(u=\ln(\tan x)\), I did

\[\begin{align} \int_0^\infty \cos(x) \text{sech}(x)dx &= 2\int_0^\infty \frac{e^{-x}}{1+e^{-2x}}\cos(x) dx\end{align}\]

Now use \(\displaystyle \frac{1}{1+e^{-2x}}=\sum_{n=0}^\infty (-1)^n e^{-2nx}\)

\[\begin{align} \int_0^\infty \cos(x)e^{-x} \sum_{n=0}^\infty (-1)^n e^{-2nx} dx &= \sum_{n=0}^\infty (-1)^n \int_0^\infty \cos(x) e^{-x(2n+1)}dx \\ &= \sum_{n=0}^{\infty}\frac{(-1)^n (2n+1)}{(2n+1)^2+1}\end{align}\]

This sum can be evaluated my many methods. Residues will be the easiest.
 
Last edited:
\int_{0}^{\frac{\pi}{2}}\cos(\ln(\tan(x)))dx

\int^{\frac{\pi}{2}}_{0}\, \cos (\ln(\sin x )\,-\,\ln(\cos x ))\, dx

=\int^{\frac{\pi}{2}}_{0}\, \cos (\ln(\sin x ))\,\cos(\ln(\cos x ))+\,\sin(\ln(\cos x ))\,\sin(\ln(\sin x ))\, dx

\text{Which is the real part of : }(\sin x)^i \cdot (\cos x)^{-i}

\int^{\frac{\pi}{2}}_0 \,(\sin x)^i \cdot (\cos x)^{-i} \, dx

\text{Now I would use the so called property of beta function }

\beta (x,y) = 2\int_0^{\pi/2}(\sin\theta)^{2x-1}(\cos\theta)^{2y-1}\,d\theta,

\int^{\frac{\pi}{2}}_{0}\, \cos (\ln(\sin x ))\,\cos(\ln(\cos x ))+\,\sin(\ln(\cos x ))\,\sin(\ln(\sin x ))\, dx\,= \, \mathcal{Re} ( \int^{\frac{\pi}{2}}_{0} (\sin x)^i \cdot (\cos x)^{-i} )

\, \mathcal{Re}( \int^{\frac{\pi}{2}}_{0} (\sin x)^i \cdot (\cos x)^{-i} ) =\frac{1}{2} \, \mathcal{Re} ( \int^{\frac{\pi}{2}}_{0} (\sin x)^{2(\frac{1+i}{2})-1} \cdot (\cos x)^{2(\frac{1-i}{2})-1} ) \,=\,\frac{1}{2} \mathcal{Re}( \Gamma{(\frac{1+i}{2})} \, \Gamma{(\frac{1-i}{2})} )

\frac{1}{2}\mathcal{Re}( \Gamma{(\frac{1+i}{2})} \, \Gamma{(\frac{1-i}{2})})=\frac{1}{2}\mathcal{Re}\( \Gamma{(\frac{1+i}{2})} \, \Gamma{(1-(\frac{1+i}{2}))}\)=\, \frac{1}{2}\,\mathcal{Re} ( \frac{\frac{\pi}{2}}{\sin(\frac{\pi+i\pi}{2})})

\sin(\frac{\pi+i\pi}{2})=\,\frac{e^{\frac{-\pi+i\pi}{2}}-e^{\frac{\pi-i\pi}{2}}}{2i}=\frac{ie^{\frac{-\pi}{2}}+ie^{\frac{\pi}{2}}}{2i}= \frac{e^{\frac{-\pi}{2}}+e^{\frac{\pi}{2}}}{2}=\cosh(\frac{\pi}{2})

\, \frac{1}{2}\,\mathcal{Re} ( \frac{\pi}{\sin(\frac{\pi+i\pi}{2})} ) = \frac{1}{2} \mathcal{Re}( \frac{\pi}{\cosh(\frac{\pi}{2})} ) = \frac {\pi}{2} \sec h ( \frac {\pi}{2})
 
Very Good ZaidAlyafey! :)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top