MHB Definite Integral #2: Prove \[\pi/2 \text{sech}(\pi/2)\]

  • Thread starter Thread starter sbhatnagar
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary
The discussion focuses on proving the integral \[\int_0^{\pi/2}\cos(\ln(\tan(x)))dx=\frac{\pi}{2} \text{sech} \left(\frac{\pi}{2}\right)\]. Participants explore various approaches, including substitutions and series expansions, to simplify the integral. One method involves using the substitution \(u=\ln(\tan x)\) and transforming the integral into a form that utilizes the beta function and properties of the gamma function. The conversation highlights the connection between the integral and complex analysis, particularly through the use of residues. The thread concludes with a successful evaluation of the integral, confirming the original statement.
sbhatnagar
Messages
87
Reaction score
0
Prove that

\[\int_0^{\pi/2}\cos(\ln(\tan(x)))dx=\frac{\pi}{2} \text{sech} \left(\frac{\pi}{2}\right)\]
 
Mathematics news on Phys.org
Let $u = \ln{\tan{x}}$. Then we have $x = \arctan{(e^u)}$ and:

$$\mathrm{d} x = \frac{1}{e^u + e^{-u}} ~ \mathrm{d} u = \frac{1}{2} \mathrm{sech}{(u)} ~ \mathrm{d} u$$

We also have the new integral bounds $\ln{(\tan{0})} = -\infty$ and $\ln{(\tan{\frac{\pi}{2}})} = + \infty$. Substituting:

$$\displaystyle \int_0^{\frac{\pi}{2}} \cos{\ln{\tan{x}}} ~ \mathrm{d} x = \frac{1}{2} \int_{-\infty}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u$$

We note the integrand is even, as both $\cos{(u)}$ and $\mathrm{sech}{(u)}$ are even. Thus we have:

$$\frac{1}{2} \int_{-\infty}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u = \int_{0}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u$$

Now substitute $z =e^u$, so $u = \ln{z}$, and hence $\mathrm{d} u = \frac{1}{z} ~ \mathrm{d} z$. The bounds now become $e^0 = 1$ and $e^{+\infty} = + \infty$. Substituting:

$$\int_{0}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u = \int_{1}^{+\infty} \cos{(\ln{z})} \mathrm{sech}{(\ln{z})} \cdot \frac{1}{z} ~ \mathrm{d} z$$

Using the complex exponential form of the hyperbolic secant, we see that:

$$\mathrm{sech}{(\ln{z})} = \frac{2z}{z^2 + 1}$$

And thus, our integral becomes:

$$\int_{1}^{+\infty} \frac{2z \cos{\ln{z}} }{z^2 + 1} \cdot \frac{1}{z} ~ \mathrm{d} z = 2 \int_{1}^{+\infty} \frac{\cos{\ln{z}} }{z^2 + 1} ~ \mathrm{d} z$$

We know from the complex exponential form of $\cos$ that:

$$\cos{\ln{z}} = \frac{1}{2} \left ( z^{-i} + z^i \right )$$

Substituting this into the integrand, we get:

$$\int_{1}^{+\infty} \frac{z^{-i} + z^i}{z^2 + 1} ~ \mathrm{d} z$$

And I can't seem to get any farther. I'll try and keep going later, I need sleep. Am I even on the right track, anyway?
 
Bacterius said:
Let $u = \ln{\tan{x}}$. Then we have $x = \arctan{(e^u)}$ and:

$$\mathrm{d} x = \frac{1}{e^u + e^{-u}} ~ \mathrm{d} u = \frac{1}{2} \mathrm{sech}{(u)} ~ \mathrm{d} u$$

We also have the new integral bounds $\ln{(\tan{0})} = -\infty$ and $\ln{(\tan{\frac{\pi}{2}})} = + \infty$. Substituting:

$$\displaystyle \int_0^{\frac{\pi}{2}} \cos{\ln{\tan{x}}} ~ \mathrm{d} x = \frac{1}{2} \int_{-\infty}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u$$

We note the integrand is even, as both $\cos{(u)}$ and $\mathrm{sech}{(u)}$ are even. Thus we have:

$$\frac{1}{2} \int_{-\infty}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u = \int_{0}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u$$

Now substitute $z =e^u$, so $u = \ln{z}$, and hence $\mathrm{d} u = \frac{1}{z} ~ \mathrm{d} z$. The bounds now become $e^0 = 1$ and $e^{+\infty} = + \infty$. Substituting:

$$\int_{0}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u = \int_{1}^{+\infty} \cos{(\ln{z})} \mathrm{sech}{(\ln{z})} \cdot \frac{1}{z} ~ \mathrm{d} z$$

Using the complex exponential form of the hyperbolic secant, we see that:

$$\mathrm{sech}{(\ln{z})} = \frac{2z}{z^2 + 1}$$

And thus, our integral becomes:

$$\int_{1}^{+\infty} \frac{2z \cos{\ln{z}} }{z^2 + 1} \cdot \frac{1}{z} ~ \mathrm{d} z = 2 \int_{1}^{+\infty} \frac{\cos{\ln{z}} }{z^2 + 1} ~ \mathrm{d} z$$

We know from the complex exponential form of $\cos$ that:

$$\cos{\ln{z}} = \frac{1}{2} \left ( z^{-i} + z^i \right )$$

Substituting this into the integrand, we get:

$$\int_{1}^{+\infty} \frac{z^{-i} + z^i}{z^2 + 1} ~ \mathrm{d} z$$

And I can't seem to get any farther. I'll try and keep going later, I need sleep. Am I even on the right track, anyway?

Bacterius, my approach was a little different from yours. After using the substitution \(u=\ln(\tan x)\), I did

\[\begin{align} \int_0^\infty \cos(x) \text{sech}(x)dx &= 2\int_0^\infty \frac{e^{-x}}{1+e^{-2x}}\cos(x) dx\end{align}\]

Now use \(\displaystyle \frac{1}{1+e^{-2x}}=\sum_{n=0}^\infty (-1)^n e^{-2nx}\)

\[\begin{align} \int_0^\infty \cos(x)e^{-x} \sum_{n=0}^\infty (-1)^n e^{-2nx} dx &= \sum_{n=0}^\infty (-1)^n \int_0^\infty \cos(x) e^{-x(2n+1)}dx \\ &= \sum_{n=0}^{\infty}\frac{(-1)^n (2n+1)}{(2n+1)^2+1}\end{align}\]

This sum can be evaluated my many methods. Residues will be the easiest.
 
Last edited:
\int_{0}^{\frac{\pi}{2}}\cos(\ln(\tan(x)))dx

\int^{\frac{\pi}{2}}_{0}\, \cos (\ln(\sin x )\,-\,\ln(\cos x ))\, dx

=\int^{\frac{\pi}{2}}_{0}\, \cos (\ln(\sin x ))\,\cos(\ln(\cos x ))+\,\sin(\ln(\cos x ))\,\sin(\ln(\sin x ))\, dx

\text{Which is the real part of : }(\sin x)^i \cdot (\cos x)^{-i}

\int^{\frac{\pi}{2}}_0 \,(\sin x)^i \cdot (\cos x)^{-i} \, dx

\text{Now I would use the so called property of beta function }

\beta (x,y) = 2\int_0^{\pi/2}(\sin\theta)^{2x-1}(\cos\theta)^{2y-1}\,d\theta,

\int^{\frac{\pi}{2}}_{0}\, \cos (\ln(\sin x ))\,\cos(\ln(\cos x ))+\,\sin(\ln(\cos x ))\,\sin(\ln(\sin x ))\, dx\,= \, \mathcal{Re} ( \int^{\frac{\pi}{2}}_{0} (\sin x)^i \cdot (\cos x)^{-i} )

\, \mathcal{Re}( \int^{\frac{\pi}{2}}_{0} (\sin x)^i \cdot (\cos x)^{-i} ) =\frac{1}{2} \, \mathcal{Re} ( \int^{\frac{\pi}{2}}_{0} (\sin x)^{2(\frac{1+i}{2})-1} \cdot (\cos x)^{2(\frac{1-i}{2})-1} ) \,=\,\frac{1}{2} \mathcal{Re}( \Gamma{(\frac{1+i}{2})} \, \Gamma{(\frac{1-i}{2})} )

\frac{1}{2}\mathcal{Re}( \Gamma{(\frac{1+i}{2})} \, \Gamma{(\frac{1-i}{2})})=\frac{1}{2}\mathcal{Re}\( \Gamma{(\frac{1+i}{2})} \, \Gamma{(1-(\frac{1+i}{2}))}\)=\, \frac{1}{2}\,\mathcal{Re} ( \frac{\frac{\pi}{2}}{\sin(\frac{\pi+i\pi}{2})})

\sin(\frac{\pi+i\pi}{2})=\,\frac{e^{\frac{-\pi+i\pi}{2}}-e^{\frac{\pi-i\pi}{2}}}{2i}=\frac{ie^{\frac{-\pi}{2}}+ie^{\frac{\pi}{2}}}{2i}= \frac{e^{\frac{-\pi}{2}}+e^{\frac{\pi}{2}}}{2}=\cosh(\frac{\pi}{2})

\, \frac{1}{2}\,\mathcal{Re} ( \frac{\pi}{\sin(\frac{\pi+i\pi}{2})} ) = \frac{1}{2} \mathcal{Re}( \frac{\pi}{\cosh(\frac{\pi}{2})} ) = \frac {\pi}{2} \sec h ( \frac {\pi}{2})
 
Very Good ZaidAlyafey! :)
 
Good morning I have been refreshing my memory about Leibniz differentiation of integrals and found some useful videos from digital-university.org on YouTube. Although the audio quality is poor and the speaker proceeds a bit slowly, the explanations and processes are clear. However, it seems that one video in the Leibniz rule series is missing. While the videos are still present on YouTube, the referring website no longer exists but is preserved on the internet archive...

Similar threads

Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K