Definite Integral #2: Prove \[\pi/2 \text{sech}(\pi/2)\]

  • Context: MHB 
  • Thread starter Thread starter sbhatnagar
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary
SUMMARY

The integral \[\int_0^{\pi/2}\cos(\ln(\tan(x)))dx\] is proven to equal \(\frac{\pi}{2} \text{sech} \left(\frac{\pi}{2}\right)\) through various mathematical techniques. The discussion highlights the use of substitution \(u=\ln(\tan x)\) and the application of the beta function property. Additionally, the evaluation of the integral involves complex analysis, specifically utilizing residues and the Gamma function to achieve the final result.

PREREQUISITES
  • Understanding of definite integrals and their properties
  • Familiarity with complex analysis and residue theorem
  • Knowledge of the beta function and its applications
  • Proficiency in manipulating Gamma functions
NEXT STEPS
  • Study the properties of the beta function and its relation to integrals
  • Learn about the residue theorem in complex analysis
  • Explore the Gamma function and its applications in integral evaluation
  • Investigate advanced techniques in evaluating definite integrals involving logarithmic and trigonometric functions
USEFUL FOR

Mathematicians, students studying advanced calculus, and anyone interested in integral evaluation techniques, particularly those involving complex analysis and special functions.

sbhatnagar
Messages
87
Reaction score
0
Prove that

\[\int_0^{\pi/2}\cos(\ln(\tan(x)))dx=\frac{\pi}{2} \text{sech} \left(\frac{\pi}{2}\right)\]
 
Physics news on Phys.org
Let $u = \ln{\tan{x}}$. Then we have $x = \arctan{(e^u)}$ and:

$$\mathrm{d} x = \frac{1}{e^u + e^{-u}} ~ \mathrm{d} u = \frac{1}{2} \mathrm{sech}{(u)} ~ \mathrm{d} u$$

We also have the new integral bounds $\ln{(\tan{0})} = -\infty$ and $\ln{(\tan{\frac{\pi}{2}})} = + \infty$. Substituting:

$$\displaystyle \int_0^{\frac{\pi}{2}} \cos{\ln{\tan{x}}} ~ \mathrm{d} x = \frac{1}{2} \int_{-\infty}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u$$

We note the integrand is even, as both $\cos{(u)}$ and $\mathrm{sech}{(u)}$ are even. Thus we have:

$$\frac{1}{2} \int_{-\infty}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u = \int_{0}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u$$

Now substitute $z =e^u$, so $u = \ln{z}$, and hence $\mathrm{d} u = \frac{1}{z} ~ \mathrm{d} z$. The bounds now become $e^0 = 1$ and $e^{+\infty} = + \infty$. Substituting:

$$\int_{0}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u = \int_{1}^{+\infty} \cos{(\ln{z})} \mathrm{sech}{(\ln{z})} \cdot \frac{1}{z} ~ \mathrm{d} z$$

Using the complex exponential form of the hyperbolic secant, we see that:

$$\mathrm{sech}{(\ln{z})} = \frac{2z}{z^2 + 1}$$

And thus, our integral becomes:

$$\int_{1}^{+\infty} \frac{2z \cos{\ln{z}} }{z^2 + 1} \cdot \frac{1}{z} ~ \mathrm{d} z = 2 \int_{1}^{+\infty} \frac{\cos{\ln{z}} }{z^2 + 1} ~ \mathrm{d} z$$

We know from the complex exponential form of $\cos$ that:

$$\cos{\ln{z}} = \frac{1}{2} \left ( z^{-i} + z^i \right )$$

Substituting this into the integrand, we get:

$$\int_{1}^{+\infty} \frac{z^{-i} + z^i}{z^2 + 1} ~ \mathrm{d} z$$

And I can't seem to get any farther. I'll try and keep going later, I need sleep. Am I even on the right track, anyway?
 
Bacterius said:
Let $u = \ln{\tan{x}}$. Then we have $x = \arctan{(e^u)}$ and:

$$\mathrm{d} x = \frac{1}{e^u + e^{-u}} ~ \mathrm{d} u = \frac{1}{2} \mathrm{sech}{(u)} ~ \mathrm{d} u$$

We also have the new integral bounds $\ln{(\tan{0})} = -\infty$ and $\ln{(\tan{\frac{\pi}{2}})} = + \infty$. Substituting:

$$\displaystyle \int_0^{\frac{\pi}{2}} \cos{\ln{\tan{x}}} ~ \mathrm{d} x = \frac{1}{2} \int_{-\infty}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u$$

We note the integrand is even, as both $\cos{(u)}$ and $\mathrm{sech}{(u)}$ are even. Thus we have:

$$\frac{1}{2} \int_{-\infty}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u = \int_{0}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u$$

Now substitute $z =e^u$, so $u = \ln{z}$, and hence $\mathrm{d} u = \frac{1}{z} ~ \mathrm{d} z$. The bounds now become $e^0 = 1$ and $e^{+\infty} = + \infty$. Substituting:

$$\int_{0}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u = \int_{1}^{+\infty} \cos{(\ln{z})} \mathrm{sech}{(\ln{z})} \cdot \frac{1}{z} ~ \mathrm{d} z$$

Using the complex exponential form of the hyperbolic secant, we see that:

$$\mathrm{sech}{(\ln{z})} = \frac{2z}{z^2 + 1}$$

And thus, our integral becomes:

$$\int_{1}^{+\infty} \frac{2z \cos{\ln{z}} }{z^2 + 1} \cdot \frac{1}{z} ~ \mathrm{d} z = 2 \int_{1}^{+\infty} \frac{\cos{\ln{z}} }{z^2 + 1} ~ \mathrm{d} z$$

We know from the complex exponential form of $\cos$ that:

$$\cos{\ln{z}} = \frac{1}{2} \left ( z^{-i} + z^i \right )$$

Substituting this into the integrand, we get:

$$\int_{1}^{+\infty} \frac{z^{-i} + z^i}{z^2 + 1} ~ \mathrm{d} z$$

And I can't seem to get any farther. I'll try and keep going later, I need sleep. Am I even on the right track, anyway?

Bacterius, my approach was a little different from yours. After using the substitution \(u=\ln(\tan x)\), I did

\[\begin{align} \int_0^\infty \cos(x) \text{sech}(x)dx &= 2\int_0^\infty \frac{e^{-x}}{1+e^{-2x}}\cos(x) dx\end{align}\]

Now use \(\displaystyle \frac{1}{1+e^{-2x}}=\sum_{n=0}^\infty (-1)^n e^{-2nx}\)

\[\begin{align} \int_0^\infty \cos(x)e^{-x} \sum_{n=0}^\infty (-1)^n e^{-2nx} dx &= \sum_{n=0}^\infty (-1)^n \int_0^\infty \cos(x) e^{-x(2n+1)}dx \\ &= \sum_{n=0}^{\infty}\frac{(-1)^n (2n+1)}{(2n+1)^2+1}\end{align}\]

This sum can be evaluated my many methods. Residues will be the easiest.
 
Last edited:
\int_{0}^{\frac{\pi}{2}}\cos(\ln(\tan(x)))dx

\int^{\frac{\pi}{2}}_{0}\, \cos (\ln(\sin x )\,-\,\ln(\cos x ))\, dx

=\int^{\frac{\pi}{2}}_{0}\, \cos (\ln(\sin x ))\,\cos(\ln(\cos x ))+\,\sin(\ln(\cos x ))\,\sin(\ln(\sin x ))\, dx

\text{Which is the real part of : }(\sin x)^i \cdot (\cos x)^{-i}

\int^{\frac{\pi}{2}}_0 \,(\sin x)^i \cdot (\cos x)^{-i} \, dx

\text{Now I would use the so called property of beta function }

\beta (x,y) = 2\int_0^{\pi/2}(\sin\theta)^{2x-1}(\cos\theta)^{2y-1}\,d\theta,

\int^{\frac{\pi}{2}}_{0}\, \cos (\ln(\sin x ))\,\cos(\ln(\cos x ))+\,\sin(\ln(\cos x ))\,\sin(\ln(\sin x ))\, dx\,= \, \mathcal{Re} ( \int^{\frac{\pi}{2}}_{0} (\sin x)^i \cdot (\cos x)^{-i} )

\, \mathcal{Re}( \int^{\frac{\pi}{2}}_{0} (\sin x)^i \cdot (\cos x)^{-i} ) =\frac{1}{2} \, \mathcal{Re} ( \int^{\frac{\pi}{2}}_{0} (\sin x)^{2(\frac{1+i}{2})-1} \cdot (\cos x)^{2(\frac{1-i}{2})-1} ) \,=\,\frac{1}{2} \mathcal{Re}( \Gamma{(\frac{1+i}{2})} \, \Gamma{(\frac{1-i}{2})} )

\frac{1}{2}\mathcal{Re}( \Gamma{(\frac{1+i}{2})} \, \Gamma{(\frac{1-i}{2})})=\frac{1}{2}\mathcal{Re}\( \Gamma{(\frac{1+i}{2})} \, \Gamma{(1-(\frac{1+i}{2}))}\)=\, \frac{1}{2}\,\mathcal{Re} ( \frac{\frac{\pi}{2}}{\sin(\frac{\pi+i\pi}{2})})

\sin(\frac{\pi+i\pi}{2})=\,\frac{e^{\frac{-\pi+i\pi}{2}}-e^{\frac{\pi-i\pi}{2}}}{2i}=\frac{ie^{\frac{-\pi}{2}}+ie^{\frac{\pi}{2}}}{2i}= \frac{e^{\frac{-\pi}{2}}+e^{\frac{\pi}{2}}}{2}=\cosh(\frac{\pi}{2})

\, \frac{1}{2}\,\mathcal{Re} ( \frac{\pi}{\sin(\frac{\pi+i\pi}{2})} ) = \frac{1}{2} \mathcal{Re}( \frac{\pi}{\cosh(\frac{\pi}{2})} ) = \frac {\pi}{2} \sec h ( \frac {\pi}{2})
 
Very Good ZaidAlyafey! :)
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K