Definite Integral #2: Prove \[\pi/2 \text{sech}(\pi/2)\]

  • Context: MHB 
  • Thread starter Thread starter sbhatnagar
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary

Discussion Overview

The discussion revolves around proving the integral \[\int_0^{\pi/2}\cos(\ln(\tan(x)))dx=\frac{\pi}{2} \text{sech} \left(\frac{\pi}{2}\right)\]. Participants explore various approaches and methods related to this integral, including substitutions and series expansions.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning

Main Points Raised

  • One participant suggests using the substitution \(u=\ln(\tan x)\) and transforms the integral into a form involving \(\cos(x) \text{sech}(x)\).
  • Another participant provides a detailed approach involving the beta function and complex analysis, expressing the integral in terms of gamma functions and their real parts.
  • There is a mention of evaluating a sum that arises from the integral, with a suggestion that residues may provide the easiest method for evaluation.
  • A participant expresses uncertainty about their progress and whether they are on the right track, indicating a lack of confidence in their approach.
  • One participant praises another's contribution, indicating engagement and acknowledgment of the complexity of the discussion.

Areas of Agreement / Disagreement

The discussion does not reach a consensus, as multiple approaches are presented without agreement on a definitive method or solution. Participants express differing techniques and levels of confidence in their respective methods.

Contextual Notes

Some methods rely on complex analysis and properties of special functions, which may introduce assumptions about convergence and the applicability of certain transformations. The discussion remains open to interpretation and further exploration of the integral.

sbhatnagar
Messages
87
Reaction score
0
Prove that

\[\int_0^{\pi/2}\cos(\ln(\tan(x)))dx=\frac{\pi}{2} \text{sech} \left(\frac{\pi}{2}\right)\]
 
Physics news on Phys.org
Let $u = \ln{\tan{x}}$. Then we have $x = \arctan{(e^u)}$ and:

$$\mathrm{d} x = \frac{1}{e^u + e^{-u}} ~ \mathrm{d} u = \frac{1}{2} \mathrm{sech}{(u)} ~ \mathrm{d} u$$

We also have the new integral bounds $\ln{(\tan{0})} = -\infty$ and $\ln{(\tan{\frac{\pi}{2}})} = + \infty$. Substituting:

$$\displaystyle \int_0^{\frac{\pi}{2}} \cos{\ln{\tan{x}}} ~ \mathrm{d} x = \frac{1}{2} \int_{-\infty}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u$$

We note the integrand is even, as both $\cos{(u)}$ and $\mathrm{sech}{(u)}$ are even. Thus we have:

$$\frac{1}{2} \int_{-\infty}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u = \int_{0}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u$$

Now substitute $z =e^u$, so $u = \ln{z}$, and hence $\mathrm{d} u = \frac{1}{z} ~ \mathrm{d} z$. The bounds now become $e^0 = 1$ and $e^{+\infty} = + \infty$. Substituting:

$$\int_{0}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u = \int_{1}^{+\infty} \cos{(\ln{z})} \mathrm{sech}{(\ln{z})} \cdot \frac{1}{z} ~ \mathrm{d} z$$

Using the complex exponential form of the hyperbolic secant, we see that:

$$\mathrm{sech}{(\ln{z})} = \frac{2z}{z^2 + 1}$$

And thus, our integral becomes:

$$\int_{1}^{+\infty} \frac{2z \cos{\ln{z}} }{z^2 + 1} \cdot \frac{1}{z} ~ \mathrm{d} z = 2 \int_{1}^{+\infty} \frac{\cos{\ln{z}} }{z^2 + 1} ~ \mathrm{d} z$$

We know from the complex exponential form of $\cos$ that:

$$\cos{\ln{z}} = \frac{1}{2} \left ( z^{-i} + z^i \right )$$

Substituting this into the integrand, we get:

$$\int_{1}^{+\infty} \frac{z^{-i} + z^i}{z^2 + 1} ~ \mathrm{d} z$$

And I can't seem to get any farther. I'll try and keep going later, I need sleep. Am I even on the right track, anyway?
 
Bacterius said:
Let $u = \ln{\tan{x}}$. Then we have $x = \arctan{(e^u)}$ and:

$$\mathrm{d} x = \frac{1}{e^u + e^{-u}} ~ \mathrm{d} u = \frac{1}{2} \mathrm{sech}{(u)} ~ \mathrm{d} u$$

We also have the new integral bounds $\ln{(\tan{0})} = -\infty$ and $\ln{(\tan{\frac{\pi}{2}})} = + \infty$. Substituting:

$$\displaystyle \int_0^{\frac{\pi}{2}} \cos{\ln{\tan{x}}} ~ \mathrm{d} x = \frac{1}{2} \int_{-\infty}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u$$

We note the integrand is even, as both $\cos{(u)}$ and $\mathrm{sech}{(u)}$ are even. Thus we have:

$$\frac{1}{2} \int_{-\infty}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u = \int_{0}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u$$

Now substitute $z =e^u$, so $u = \ln{z}$, and hence $\mathrm{d} u = \frac{1}{z} ~ \mathrm{d} z$. The bounds now become $e^0 = 1$ and $e^{+\infty} = + \infty$. Substituting:

$$\int_{0}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u = \int_{1}^{+\infty} \cos{(\ln{z})} \mathrm{sech}{(\ln{z})} \cdot \frac{1}{z} ~ \mathrm{d} z$$

Using the complex exponential form of the hyperbolic secant, we see that:

$$\mathrm{sech}{(\ln{z})} = \frac{2z}{z^2 + 1}$$

And thus, our integral becomes:

$$\int_{1}^{+\infty} \frac{2z \cos{\ln{z}} }{z^2 + 1} \cdot \frac{1}{z} ~ \mathrm{d} z = 2 \int_{1}^{+\infty} \frac{\cos{\ln{z}} }{z^2 + 1} ~ \mathrm{d} z$$

We know from the complex exponential form of $\cos$ that:

$$\cos{\ln{z}} = \frac{1}{2} \left ( z^{-i} + z^i \right )$$

Substituting this into the integrand, we get:

$$\int_{1}^{+\infty} \frac{z^{-i} + z^i}{z^2 + 1} ~ \mathrm{d} z$$

And I can't seem to get any farther. I'll try and keep going later, I need sleep. Am I even on the right track, anyway?

Bacterius, my approach was a little different from yours. After using the substitution \(u=\ln(\tan x)\), I did

\[\begin{align} \int_0^\infty \cos(x) \text{sech}(x)dx &= 2\int_0^\infty \frac{e^{-x}}{1+e^{-2x}}\cos(x) dx\end{align}\]

Now use \(\displaystyle \frac{1}{1+e^{-2x}}=\sum_{n=0}^\infty (-1)^n e^{-2nx}\)

\[\begin{align} \int_0^\infty \cos(x)e^{-x} \sum_{n=0}^\infty (-1)^n e^{-2nx} dx &= \sum_{n=0}^\infty (-1)^n \int_0^\infty \cos(x) e^{-x(2n+1)}dx \\ &= \sum_{n=0}^{\infty}\frac{(-1)^n (2n+1)}{(2n+1)^2+1}\end{align}\]

This sum can be evaluated my many methods. Residues will be the easiest.
 
Last edited:
\int_{0}^{\frac{\pi}{2}}\cos(\ln(\tan(x)))dx

\int^{\frac{\pi}{2}}_{0}\, \cos (\ln(\sin x )\,-\,\ln(\cos x ))\, dx

=\int^{\frac{\pi}{2}}_{0}\, \cos (\ln(\sin x ))\,\cos(\ln(\cos x ))+\,\sin(\ln(\cos x ))\,\sin(\ln(\sin x ))\, dx

\text{Which is the real part of : }(\sin x)^i \cdot (\cos x)^{-i}

\int^{\frac{\pi}{2}}_0 \,(\sin x)^i \cdot (\cos x)^{-i} \, dx

\text{Now I would use the so called property of beta function }

\beta (x,y) = 2\int_0^{\pi/2}(\sin\theta)^{2x-1}(\cos\theta)^{2y-1}\,d\theta,

\int^{\frac{\pi}{2}}_{0}\, \cos (\ln(\sin x ))\,\cos(\ln(\cos x ))+\,\sin(\ln(\cos x ))\,\sin(\ln(\sin x ))\, dx\,= \, \mathcal{Re} ( \int^{\frac{\pi}{2}}_{0} (\sin x)^i \cdot (\cos x)^{-i} )

\, \mathcal{Re}( \int^{\frac{\pi}{2}}_{0} (\sin x)^i \cdot (\cos x)^{-i} ) =\frac{1}{2} \, \mathcal{Re} ( \int^{\frac{\pi}{2}}_{0} (\sin x)^{2(\frac{1+i}{2})-1} \cdot (\cos x)^{2(\frac{1-i}{2})-1} ) \,=\,\frac{1}{2} \mathcal{Re}( \Gamma{(\frac{1+i}{2})} \, \Gamma{(\frac{1-i}{2})} )

\frac{1}{2}\mathcal{Re}( \Gamma{(\frac{1+i}{2})} \, \Gamma{(\frac{1-i}{2})})=\frac{1}{2}\mathcal{Re}\( \Gamma{(\frac{1+i}{2})} \, \Gamma{(1-(\frac{1+i}{2}))}\)=\, \frac{1}{2}\,\mathcal{Re} ( \frac{\frac{\pi}{2}}{\sin(\frac{\pi+i\pi}{2})})

\sin(\frac{\pi+i\pi}{2})=\,\frac{e^{\frac{-\pi+i\pi}{2}}-e^{\frac{\pi-i\pi}{2}}}{2i}=\frac{ie^{\frac{-\pi}{2}}+ie^{\frac{\pi}{2}}}{2i}= \frac{e^{\frac{-\pi}{2}}+e^{\frac{\pi}{2}}}{2}=\cosh(\frac{\pi}{2})

\, \frac{1}{2}\,\mathcal{Re} ( \frac{\pi}{\sin(\frac{\pi+i\pi}{2})} ) = \frac{1}{2} \mathcal{Re}( \frac{\pi}{\cosh(\frac{\pi}{2})} ) = \frac {\pi}{2} \sec h ( \frac {\pi}{2})
 
Very Good ZaidAlyafey! :)
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K