\int_{0}^{\frac{\pi}{2}}\cos(\ln(\tan(x)))dx
\int^{\frac{\pi}{2}}_{0}\, \cos (\ln(\sin x )\,-\,\ln(\cos x ))\, dx
=\int^{\frac{\pi}{2}}_{0}\, \cos (\ln(\sin x ))\,\cos(\ln(\cos x ))+\,\sin(\ln(\cos x ))\,\sin(\ln(\sin x ))\, dx
\text{Which is the real part of : }(\sin x)^i \cdot (\cos x)^{-i}
\int^{\frac{\pi}{2}}_0 \,(\sin x)^i \cdot (\cos x)^{-i} \, dx
\text{Now I would use the so called property of beta function }
\beta (x,y) = 2\int_0^{\pi/2}(\sin\theta)^{2x-1}(\cos\theta)^{2y-1}\,d\theta,
\int^{\frac{\pi}{2}}_{0}\, \cos (\ln(\sin x ))\,\cos(\ln(\cos x ))+\,\sin(\ln(\cos x ))\,\sin(\ln(\sin x ))\, dx\,= \, \mathcal{Re} ( \int^{\frac{\pi}{2}}_{0} (\sin x)^i \cdot (\cos x)^{-i} )
\, \mathcal{Re}( \int^{\frac{\pi}{2}}_{0} (\sin x)^i \cdot (\cos x)^{-i} ) =\frac{1}{2} \, \mathcal{Re} ( \int^{\frac{\pi}{2}}_{0} (\sin x)^{2(\frac{1+i}{2})-1} \cdot (\cos x)^{2(\frac{1-i}{2})-1} ) \,=\,\frac{1}{2} \mathcal{Re}( \Gamma{(\frac{1+i}{2})} \, \Gamma{(\frac{1-i}{2})} )
\frac{1}{2}\mathcal{Re}( \Gamma{(\frac{1+i}{2})} \, \Gamma{(\frac{1-i}{2})})=\frac{1}{2}\mathcal{Re}\( \Gamma{(\frac{1+i}{2})} \, \Gamma{(1-(\frac{1+i}{2}))}\)=\, \frac{1}{2}\,\mathcal{Re} ( \frac{\frac{\pi}{2}}{\sin(\frac{\pi+i\pi}{2})})
\sin(\frac{\pi+i\pi}{2})=\,\frac{e^{\frac{-\pi+i\pi}{2}}-e^{\frac{\pi-i\pi}{2}}}{2i}=\frac{ie^{\frac{-\pi}{2}}+ie^{\frac{\pi}{2}}}{2i}= \frac{e^{\frac{-\pi}{2}}+e^{\frac{\pi}{2}}}{2}=\cosh(\frac{\pi}{2})
\, \frac{1}{2}\,\mathcal{Re} ( \frac{\pi}{\sin(\frac{\pi+i\pi}{2})} ) = \frac{1}{2} \mathcal{Re}( \frac{\pi}{\cosh(\frac{\pi}{2})} ) = \frac {\pi}{2} \sec h ( \frac {\pi}{2})