Definition of Two-Level Systems in Quantum Mechanics

  • Thread starter Thread starter JK423
  • Start date Start date
  • Tags Tags
    Systems
JK423
Gold Member
Messages
394
Reaction score
7
May you please help me with the following...
In quantum mechanics, what`s the definition of the "two-level systems"? I understand that the state vector is in the form |Ψ>=a|1>+b|2>, where |1>,|2> is a basis of the state space.
Then i think of the particle in a box. The energy is quantized (lets say that the possible values are E1 and E2) while position x is continuous. So, in the first case we would have: |Ψ>=a|E1>+b|E2> and in the second one: |Ψ>=Integral(Ψ(x) |x> dx).
So if we use as a basis the eigenstates of the energy, our system would be a "two-level system". However, in {x} representation, we would have an "infinite-level system".

So what`s the definition of a "two-level system" since the number of levels depend on the basis we use?
 
Physics news on Phys.org
Any help??
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top