I Demonstration of relation between geodesics and FLRW metric

fab13
Messages
300
Reaction score
7
I am reading a book of General Relativity and I am stuck on a demonstration. If I consider the FLRW metric as :

##\text{d}\tau^2=\text{d}t^2-a(t)^2\bigg[\dfrac{\text{d}r^2}{1-kr^2}+r^2(\text{d}\theta^2+\text{sin}^2\theta\text{d}\phi^2)\bigg]##

with ##g_{tt}=1##, ##\quad g_{rr}=\dfrac{a(t)^2}{1-kr^2}## and ##\quad g_{\theta\theta}=\dfrac{g_{\phi\phi}}{\text{sin}^2\theta}=a(t)^2 r^2##

It is said in this book that, despite of the utility of comoving coordinates, the dependence of time in scale factor ##a(t)## can be better understood if we consider a set of coordinates called "Free Fall coordinates" and noted ##(\tilde{x}^\mu, \mu=0,1,2,3)## with a metric locally Lorentzian near to the origin ##\tilde{x}^{\mu}=0## :

##g_{\mu\nu}=\eta_{\mu\nu}+\dfrac{1}{2}g_{\mu\nu,\alpha\beta}(0)\tilde{x}^{\alpha}\tilde{x}^{\beta}+\,...\quad(eq1)##

with ##\eta_{00}=-\eta_{11}=-\eta_{22}=-\eta_{33}=1\quad\quad## and ##\eta_{\mu\neq\nu}=0##

and ##g_{\mu\nu,\alpha\beta}=\dfrac{\partial^2 g_{\mu\nu}}{\partial \tilde{x}^{\alpha}\partial \tilde{x}^{\beta}}##

Moreover, one takes the expression of classic geodesics :

##\dfrac{\text{d}}{\text{d}\tau}\bigg(g_{\mu\nu}(x)\dfrac{\text{d}x^{\nu}}{\text{d}\tau}\bigg)-\dfrac{1}{2}\dfrac{\partial g_{\lambda\nu}}{\partial x^{\mu}}\dfrac{\text{d}x^{\lambda}}{\text{d}\tau}\dfrac{\text{d}x^{\nu}}{\text{d}\tau}=0\quad\quad\mu=0,1,2,3\quad (eq2)##

The author says that, by applying ##(eq1)## into the relation ##(eq2)##, one gets, at first order, the following relation :

##\dfrac{\text{d}^2 \tilde{x}^{\alpha}}{\text{d}\tau^2} = -\eta^{\alpha\gamma}\bigg[g_{\mu\gamma,\nu\beta}-\dfrac{1}{2}g_{\mu\nu,\gamma\beta}\bigg]\tilde{x}^{\beta}\dfrac{\text{d}\tilde{x}^{\mu}}{\text{d}\tau}\dfrac{\text{d}\tilde{x}^{\nu}}{\text{d}\tau}\quad\quad(eq3)##

I can't manage to obtain the ##eq(3)## from ##eq(1)## and ##eq(2)##, if someone could help me for the details of the demonstration, this would be nice.

Thanks in advance for your help
 
Physics news on Phys.org
Please show us what you did get.
 
For the moment, if I put the definition of ##g_{\nu\mu}## into ##eq(2)##, I get :

##\dfrac{\text{d}}{\text{d}\tau}\bigg(g_{\mu\nu}(x)\dfrac{\text{d}x^{\nu}}{\text{d}\tau}\bigg)=\bigg(\dfrac{\text{d}g_{\mu\nu}}{\text{d}\tau}\bigg)\,\dfrac{\text{d}x^{\nu}}{\text{d}\tau}+g_{\mu\nu}\dfrac{\text{d}^2x^{\nu}}{\text{d}\tau^2}\quad\quad eq(4)##

If I separate the two terms on RHS on ##eq(4)## :

##\bigg(\dfrac{\text{d}g_{\mu\nu}}{\text{d}\tau}\bigg)\,\dfrac{\text{d}x^{\nu}}{\text{d}\tau}=\dfrac{\text{d}}{\text{d}\tau}\bigg(\eta_{\mu\nu}+\dfrac{1}{2}g_{\mu\nu,\alpha\beta}(0)\tilde{x}^{\alpha}\tilde{x}^{\beta}\bigg)\dfrac{\text{d}x^{\nu}}{\text{d}\tau}=##

##\dfrac{1}{2}\,g_{\mu\nu,\alpha\beta}(0)\bigg[\dfrac{\text{d}\tilde{x}^{\alpha}}{\text{d}\tau}\,\tilde{x}^{\beta}+\tilde{x}^{\alpha}\,\dfrac{\text{d}\tilde{x}^{\beta}}{\text{d}\tau}\bigg]\dfrac{\text{d}x^{\nu}}{\text{d}\tau}=##

##g_{\mu\nu,\alpha\beta}(0)\bigg[\dfrac{\text{d}\tilde{x}^{\alpha}}{\text{d}\tau}\,\tilde{x}^{\beta}\bigg]\dfrac{\text{d}x^{\nu}}{\text{d}\tau}##

Concerning the second term on RHS of ##eq(4)##, maybe I could write :

##g_{\mu\nu}\dfrac{\text{d}^2x^{\nu}}{\text{d}\tau^2}=\eta_{\mu\nu}\dfrac{\text{d}^2x^{\nu}}{\text{d}\tau^2}## by neglecting the term ##\dfrac{1}{2}g_{\mu\nu,\alpha\beta}(0)\tilde{x}^{\alpha}\tilde{x}^{\beta}## in the expression of ##g_{\mu\nu}##.

Another problem, How can I transform the second term on LHS of ##(eq2)## :

##-\dfrac{1}{2}\dfrac{\partial g_{\lambda\nu}}{\partial x^{\mu}}\dfrac{\text{d}x^{\lambda}}{\text{d}\tau}\dfrac{\text{d}x^{\nu}}{\text{d}\tau}\quad\quad eq(5)## ??

Indeed, it seems that we can deduce from this term the wanted term :

##\dfrac{1}{2}\,\eta^{\alpha\gamma}\,g_{\mu\nu,\gamma\beta}\tilde{x}^{\beta}\dfrac{\text{d}\tilde{x}^{\mu}}{\text{d}\tau}\dfrac{\text{d}\tilde{x}^{\nu}}{\text{d}\tau}##

But ##\tilde{x}## coordinates ("Free Fall coordinates") appear in this last expression instead of "Comobile coordinates" ##x^{\mu}## into ##eq(5)## , so I don't know how to get it ?

Any help is welcome
 
Last edited:
Can't anyone bring a little help ?
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top