greisen
- 75
- 0
Hi,
I have to show that if the derivate f'(x) of a generalized function f(x) is defined by the sequence f'_n(x) where f(x) is defined
f_n(x)[\tex] <br /> <br /> then <br /> <br /> \int_{-\infty}^{\infty}f&#039;(x)F(x) dx = - \int_{-\infty}^{\infty}f(x)F&#039;(x) dx<br /> <br /> I use the limits for generalized functions and get<br /> <br /> lim_{n \to \infty} \int_{-\infty}^{\infty}f&#039;_n(x)F(x) dx = - \int_{-\infty}^{\infty}f_n(x)F&#039;(x) dx<br /> <br /> which should show the above - I am a liltte confused where the minus sign comes from?<br /> - \int_{-\infty}^{\infty}f(x)F&#039;(x) dx<br /> <br /> Any help appreciated - thanks in advance
I have to show that if the derivate f'(x) of a generalized function f(x) is defined by the sequence f'_n(x) where f(x) is defined
f_n(x)[\tex] <br /> <br /> then <br /> <br /> \int_{-\infty}^{\infty}f&#039;(x)F(x) dx = - \int_{-\infty}^{\infty}f(x)F&#039;(x) dx<br /> <br /> I use the limits for generalized functions and get<br /> <br /> lim_{n \to \infty} \int_{-\infty}^{\infty}f&#039;_n(x)F(x) dx = - \int_{-\infty}^{\infty}f_n(x)F&#039;(x) dx<br /> <br /> which should show the above - I am a liltte confused where the minus sign comes from?<br /> - \int_{-\infty}^{\infty}f(x)F&#039;(x) dx<br /> <br /> Any help appreciated - thanks in advance