Thanks AlephZero and Fredrik for your replies. I also am not sure if this will lead to anything, but we had a lecture about Chapter 4 and the professor ask us to fill the missing steps. And the derivation seems to go back all to the way to Chapter 2. Anyway, if
|x|=x^*x
0=\frac{\partial}{\partial a_n}\int_a^b \big(f(ε) - \sum\limits_{m}a_mU_m(ε) \big)^* \big(f(ε) - \sum\limits_{m}a_kU_k(ε) \big) dε
0=\frac{\partial}{\partial a_n}\int_a^b \big( |f(ε)|^2 - \sum\limits_{m} a_m U_m ^* f(ε) - \sum\limits_{k} a_k U_k f^*(ε) + \sum\limits_{m}a_mU_m^*(ε) \sum\limits_{k}a_kU_k(ε) \big) dε
Differentiating, constants and summation terms with indices m and k not equal to n will be killed. Therefore,
0=\int_a^b -a_n U_n^* f(ε) - a_n U_n f^*(ε) + \frac{\partial}{\partial a_n} \big( \sum\limits_{m}a_mU_m^*(ε) \sum\limits_{k}a_kU_k(ε) \big) dε
Applying product rule to the last term,
\frac{\partial}{\partial a_n} \big( \sum\limits_{m}a_mU_m^*(ε) \sum\limits_{k}a_kU_k(ε) \big)= \sum\limits_{m}a_mU_m^*(ε) \frac{\partial}{\partial a_n}\big( \sum\limits_{k}a_kU_k(ε) \big) + \frac{\partial}{\partial a_n}\big(\sum\limits_{m}a_mU_m^*(ε) \big) \sum\limits_{k}a_kU_k(ε)
Again, the non-n terms are killed during differentiation with a
n,
\frac{\partial}{\partial a_n} \big( \sum\limits_{m}a_mU_m^*(ε) \sum\limits_{k}a_kU_k(ε) \big)=\sum\limits_m a_m U_m^* (a_n U_n) + \sum\limits_k (a_k U_k) a_n U_n^*
Going back to the equation,
0=\int_a^b \bigg( -a_n U_n^* f(ε) - a_n U_n f^*(ε) +\sum\limits_m a_m U_m^* (a_n U_n) + \sum\limits_k (a_k U_k) a_n U_n^* \bigg) dε
0=-\int_a^b a_n U_n^* f(ε) dε -\int_a^b a_n U_n f^*(ε) dε + \int_a^b a_n^2 U_n^*U_n dε + \int_a^b a_n^2 U_n U_n^* dε
0=-\int_a^b a_n U_n^* f(ε) dε -\int_a^b a_n U_n f^*(ε) dε + a_n ^2 +a_n ^2
0=-\int_a^b a_n U_n^* f(ε) dε -\int_a^b a_n U_n f^*(ε) dε + 2a_n ^2
Hmm,

. Alright, I will assume that f(ε) is real to make things less complicated.
0=-\int_a^b a_n U_n^* f(ε) dε -\int_a^b a_n U_n f(ε) dε + 2a_n ^2
2a_n ^2=\int_a^b a_n U_n^* f(ε) dε + \int_a^b a_n U_n f(ε) dε
Okay, I'm almost there. There's an extra term and factor 2. Did I do something wrong?
Thanks again.
PS. In my previous post, step (5), I made a mistake. The orthonormality condition should be
1=\int_a^b U_n(ε) U_n^*(ε) dε not 0=\int_a^b U_n(ε) U_n^*(ε) dε