apervaiz
- 2
- 0
The torque contribution due to the uniaxial anisotropy is given by the equation below
\frac{\Gamma}{l_m K} = (2 \sin\theta \cos\theta)[\sin\phi e_x - \cos\phi e_y] (3)
This contribution can be taken in the LLG equation to derive the LLG equation in polar coordinates
\frac{\partial n_m}{\partial t} + ( n_m \times \frac{\partial n_m}{\partial t})=\frac{1}{2}\Omega_K \frac{\Gamma}{l_m K} (9)
where n_m= [r,\theta,\phi]. Since r is unity for magnetization a differential equation in the two angles should be possible which should have the form
\begin{bmatrix}<br /> \theta \ ' \\<br /> \phi \ ' \\<br /> \end{bmatrix}<br /> = \begin{bmatrix}<br /> \theta \\<br /> \phi \\<br /> \end{bmatrix}<br />
Now the result of this derivation is already given as
\begin{bmatrix}<br /> \theta \ ' \\<br /> \phi \ ' \\<br /> \end{bmatrix}<br /> = \begin{bmatrix}<br /> \alpha \sin \theta \cos \theta \\<br /> \cos \theta \\<br /> \end{bmatrix}<br />
I'm having a hard time deriving this result from (3) using (9). Could anyone help me with this?
here is the link of this paper
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.62.570
\frac{\Gamma}{l_m K} = (2 \sin\theta \cos\theta)[\sin\phi e_x - \cos\phi e_y] (3)
This contribution can be taken in the LLG equation to derive the LLG equation in polar coordinates
\frac{\partial n_m}{\partial t} + ( n_m \times \frac{\partial n_m}{\partial t})=\frac{1}{2}\Omega_K \frac{\Gamma}{l_m K} (9)
where n_m= [r,\theta,\phi]. Since r is unity for magnetization a differential equation in the two angles should be possible which should have the form
\begin{bmatrix}<br /> \theta \ ' \\<br /> \phi \ ' \\<br /> \end{bmatrix}<br /> = \begin{bmatrix}<br /> \theta \\<br /> \phi \\<br /> \end{bmatrix}<br />
Now the result of this derivation is already given as
\begin{bmatrix}<br /> \theta \ ' \\<br /> \phi \ ' \\<br /> \end{bmatrix}<br /> = \begin{bmatrix}<br /> \alpha \sin \theta \cos \theta \\<br /> \cos \theta \\<br /> \end{bmatrix}<br />
I'm having a hard time deriving this result from (3) using (9). Could anyone help me with this?
here is the link of this paper
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.62.570