Derivation of the Heisenberg equation for electron density

Click For Summary
SUMMARY

The forum discussion focuses on the derivation of the Heisenberg equation for electron density, specifically in the context of studying plasmons as described in "Haken-Quantum Field Theory of Solids." The user seeks clarification on the Hamiltonian operator expressed in terms of creation and annihilation operators, as well as the commutation relations involved. The discussion highlights discrepancies in the user's calculations compared to the book's solution, particularly regarding the manipulation of indices in the sums and the correct form of the Hamiltonian operator.

PREREQUISITES
  • Understanding of quantum mechanics, specifically fermionic operators.
  • Familiarity with the Heisenberg equation and Hamiltonian mechanics.
  • Knowledge of quantum field theory concepts, particularly in solid-state physics.
  • Proficiency in mathematical manipulation of operators and commutation relations.
NEXT STEPS
  • Study the derivation of the Heisenberg equation in quantum mechanics.
  • Learn about the role of creation and annihilation operators in quantum field theory.
  • Explore the implications of the Hamiltonian operator in solid-state physics.
  • Investigate the properties of fermionic operators and their commutation relations.
USEFUL FOR

Students and researchers in quantum mechanics, physicists specializing in solid-state physics, and anyone interested in the theoretical foundations of electron density and plasmons.

GiovanniNunziante
Messages
2
Reaction score
1
I'm studying plasmons from "Haken-Quantum Field Theory of Solids", and i need some help in the calculation of the equation of motion of eletrons' density
\begin{equation}
\hat{\rho}_{\overrightarrow{q}} = \frac{1}{\sqrt{V}} \sum_{\overrightarrow{k}}
\hat{a}^{\dagger}_{\overrightarrow{k}+\overrightarrow{q}} \hat{a}_{\overrightarrow{k}}
\label{eq:rhoaadag}
\end{equation}
where ##\hat{a}## and ##\hat{a}^{\dagger}## are fermionic operator
\begin{align}
\left\lbrace\hat{a}_{\overrightarrow{k}},\hat{a}^{\dagger}_{\overrightarrow{k'}}\right\rbrace = \delta_{\overrightarrow{k'},\overrightarrow{k}}
\\
\left\lbrace\hat{a}_{\overrightarrow{k}},\hat{a}_{\overrightarrow{k'}}\right\rbrace = \left\lbrace\hat{a}^{\dagger}_{\overrightarrow{k}},\hat{a}^{\dagger}_{\overrightarrow{k'}}\right\rbrace = 0 \quad \forall \overrightarrow{k},\overrightarrow{k}'
\label{eq:anticomm}
\end{align}
The book starts from the Heisneberg equation for ##\hat{a}^{\dagger}_{\overrightarrow{k}+\overrightarrow{q}}\hat{a}_{\overrightarrow{k}}##
\begin{equation}
i\hbar\frac{d}{dt}\left(\hat{a}^{\dagger}_{\overrightarrow{k}+\overrightarrow{q}} \hat{a}_{\overrightarrow{k}} \right) = \left[\hat{a}^{\dagger}_{\overrightarrow{k}+\overrightarrow{q}} \hat{a}_{\overrightarrow{k}},\hat{H}\right]
\label{eq:eqmotopre}
\tag{4}
\end{equation}
where the Hamiltonian operator is
\begin{equation}
\begin{aligned}
\hat{H} = \int d\overrightarrow{r} \hat{\psi}^{\dagger}\left(\overrightarrow{r}\right) \left(-\frac{\hbar^2}{2 m^*} \nabla^2 \right) \hat{\psi}
\left(\overrightarrow{r}\right) + \\
\frac{1}{2}\int\int d\overrightarrow{r} d\overrightarrow{r}' \hat{\psi}^{\dagger}\left(\overrightarrow{r}'\right) \hat{\psi}^{\dagger}\left(\overrightarrow{r}\right) \frac{e^2}{|\overrightarrow{r}'-\overrightarrow{r}|} \hat{\psi}\left(\overrightarrow{r}\right) \hat{\psi}\left(\overrightarrow{r}'\right)
\end{aligned}
\label{eq:hsecquant}
\end{equation}
with
\begin{equation}
\hat{\psi}\left(\overrightarrow{r}\right)=\frac{1}{\sqrt{V}} \sum_{\overrightarrow{k}} \hat{a}_{\overrightarrow{k}} \exp\left[i\overrightarrow{k}\cdot\overrightarrow{r}\right]
\label{eq:annichila}
\end{equation}
\begin{equation}
\hat{\psi}^{\dagger}\left(\overrightarrow{r}\right)=\frac{1}{\sqrt{V}} \sum_{\overrightarrow{k}} \hat{a}^{\dagger}_{\overrightarrow{k}} \exp\left[- i\overrightarrow{k}\cdot\overrightarrow{r}\right]
\label{eq:crea}
\end{equation}
The first doubt is on the Hamiltonian operator rewritten in terms of creation and annihilation operator.
According to my calculations, the Hamiltonian operator is
\begin{equation}
\hat{H}=\sum_{\overrightarrow{k}}
E_{\overrightarrow{k}}\,
\hat{a}^{\dagger}_{\overrightarrow{k}} \hat{a}_{\overrightarrow{k}} + \frac{1}{2} \sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}\,
\hat{a}^{\dagger}_{\overrightarrow{k}_1}
\hat{a}^{\dagger}_{\overrightarrow{k}_2} \hat{a}_{\overrightarrow{k}_3} \hat{a}_{\overrightarrow{k}_4}
\label{eq:hamampiezze}
\end{equation}
where
\begin{equation}
v_{q'} = \frac{4\pi e^2}{V q'^2};\quad \overrightarrow{q}'=\overrightarrow{k}_1 - \overrightarrow{k}_4
\label{eq:vq}
\end{equation}
while the book states that
$$
\overrightarrow{q}'=\overrightarrow{k}_1 + \overrightarrow{k}_3 - \overrightarrow{k}_2 - \overrightarrow{k}_4
$$
I ignore this thing, so i calculate the commutator in the Heisenberg equation
\begin{align*}
i\hbar\frac{d}{dt}\left(\hat{a}^{\dagger}_{\overrightarrow{k}+\overrightarrow{q}} \hat{a}_{\overrightarrow{k}} \right)
=
\left(E_{\overrightarrow{k}} - E_{\overrightarrow{k}+\overrightarrow{q}}\right)
\hat{a}^{\dagger}_{\overrightarrow{k}+\overrightarrow{q}}
\hat{a}_{\overrightarrow{k}}
+
%prima somma ps
& \frac{1}{2}
\sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}
\delta_{\overrightarrow{k}_2,\overrightarrow{k}_3}
%%%%argomento ps
\left[\hat{a}^{\dagger}_{\overrightarrow{k} + \overrightarrow{q}}
\hat{a}_{\overrightarrow{k}},
\hat{a}^{\dagger}_{\overrightarrow{k}_1}
\hat{a}_{\overrightarrow{k}_4}\right]
\label{eq:primo}
\\
%ss
&-\sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}
%arg ss
\hat{a}^{\dagger}_{\overrightarrow{k}_1 + \overrightarrow{q}}
\hat{a}_{\overrightarrow{k}_3}
\hat{a}^{\dagger}_{\overrightarrow{k}_2}
\hat{a}_{\overrightarrow{k}_4}
\label{eq:secondo}
\\
%ts
&+\sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}
%arg ts
\hat{a}^{\dagger}_{\overrightarrow{k}_1}
\hat{a}_{\overrightarrow{k}_3 - \overrightarrow{q} }
\hat{a}^{\dagger}_{\overrightarrow{k}_2}
\hat{a}_{\overrightarrow{k}_4}
\label{eq:terzo}
\\
%qs
&-\sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}
%arg qs
\hat{a}^{\dagger}_{\overrightarrow{k}_1}
\hat{a}_{\overrightarrow{k}_3}
\hat{a}^{\dagger}_{\overrightarrow{k}_2 + \overrightarrow{q}}
\hat{a}_{\overrightarrow{k}_4}
\label{eq:quarto}
\\
%quintas
&+\sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}
%arg quintas
\hat{a}^{\dagger}_{\overrightarrow{k}_1}
\hat{a}_{\overrightarrow{k}_3}
\hat{a}^{\dagger}_{\overrightarrow{k}_2}
\hat{a}_{\overrightarrow{k}_4 - \overrightarrow{q}}
\label{eq:quinto}
\end{align*}
the sum with the commutator
$$
\left[\hat{a}^{\dagger}_{\overrightarrow{k} + \overrightarrow{q}}
\hat{a}_{\overrightarrow{k}},
\hat{a}^{\dagger}_{\overrightarrow{k}_1}
\hat{a}_{\overrightarrow{k}_4}\right]
$$
is equal to zero.

Second doubt : I exchange the indices in the last two sums (can i do it ?)

In the second to last sum, i exchange \[\overrightarrow{k}_1\] with ##\overrightarrow{k}_2## and $\overrightarrow{k}_3$ with $\overrightarrow{k}_4$, while, in the last sum, ##\overrightarrow{k}_3## with $\overrightarrow{k}_4$ and $\overrightarrow{k}_1## with ##\overrightarrow{k}_2##
\begin{align*}
%ss
&-\sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}
%arg ss
\hat{a}^{\dagger}_{\overrightarrow{k}_1 + \overrightarrow{q}}
\hat{a}_{\overrightarrow{k}_3}
\hat{a}^{\dagger}_{\overrightarrow{k}_2}
\hat{a}_{\overrightarrow{k}_4}
\label{eq:primosec}
\\
%ts
&+\sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}
%arg ts
\hat{a}^{\dagger}_{\overrightarrow{k}_1}
\hat{a}_{\overrightarrow{k}_3 - \overrightarrow{q} }
\hat{a}^{\dagger}_{\overrightarrow{k}_2}
\hat{a}_{\overrightarrow{k}_4}
\label{eq:secondosec}
\\
%qs
&-\sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}
%arg qs
\hat{a}^{\dagger}_{\overrightarrow{k}_2}
\hat{a}_{\overrightarrow{k}_4}
\hat{a}^{\dagger}_{\overrightarrow{k}_1 + \overrightarrow{q}}
\hat{a}_{\overrightarrow{k}_3}
\label{eq:terzosec}
\\
%quintas
&+\sum
v_{q'} \;
\delta_{\overrightarrow{k}_1,\overrightarrow{k}_3+\overrightarrow{k}_4-\overrightarrow{k}_2}
%arg quintas
\hat{a}^{\dagger}_{\overrightarrow{k}_2}
\hat{a}_{\overrightarrow{k}_4}
\hat{a}^{\dagger}_{\overrightarrow{k}_1}
\hat{a}_{\overrightarrow{k}_3 - \overrightarrow{q}}
\label{eq:quartosec}
\end{align*}
i manipulate them, but i don't find the solution of the book, that is
\begin{align*}
i\hbar\frac{d}{dt}\left(\hat{a}^{\dagger}_{\overrightarrow{k}+\overrightarrow{q}} \hat{a}_{\overrightarrow{k}} \right)
=
\left(E_{\overrightarrow{k}} - E_{\overrightarrow{k}+\overrightarrow{q}}\right)
\hat{a}^{\dagger}_{\overrightarrow{k}+\overrightarrow{q}}
\hat{a}_{\overrightarrow{k}}
%ss
\\
&+\sum_{k', q'}
v_{q'} \;
%arg ss
\left[\left(\hat{a}^{\dagger}_{k + q}
\hat{a}_{k + q'}
\hat{a}^{\dagger}_{k' + q'}
\hat{a}_{k'}
\right)
-
\left(\hat{a}^{\dagger}_{k' + q'}
\hat{a}_{k'}
\hat{a}^{\dagger}_{k + q- q'}
\hat{a}_k\right)
\right]
\end{align*}
Am I on the right way? Can you give me some hint in order to find the solution of the book?

Thank you for who will answer me
 
Physics news on Phys.org
I solved it. if someone wants the solution, i will post it
 
Please post for future generations of posters... I might be interested in the future, but not in the near 5-10 years. :-)
 
  • Like
Likes   Reactions: GiovanniNunziante

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 6 ·
Replies
6
Views
3K