MHB Hence, the derivative of d/dx (x*x') is (d/dx)x*x'+x*x

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Derivative
AI Thread Summary
The discussion focuses on finding the derivative of the expression d/dx (x*x'), where x is a vector and x' is its transpose, resulting in a matrix rather than a norm. The derivative of matrix products is established using the product rule, which states that the derivative of the product of two matrices A and B is given by the sum of the derivative of A multiplied by B and A multiplied by the derivative of B. Applying this rule to the specific case of AA^T leads to the conclusion that the derivative can be expressed as the sum of two terms involving the derivatives of A and its transpose. This mathematical framework is crucial for understanding derivatives in the context of matrix calculus. The discussion provides clarity on the differentiation of matrix products, emphasizing the importance of the product rule in this context.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
I quote a question from Yahoo! Answers

What is the derivative of d/dx (x*x') where x is a vector and x' denotes x transpose (note that x*x' is a matrix, and not the norm of x!)

I have given a link to the topic there so the OP can see my response.
 
Mathematics news on Phys.org
In general, if $A=[a_{ij}(x)],\;B=[b_{ij}(x)]$ are matrices $n\times n$ with $a_{ij}(x)$ and $b_{ij}(x)$ differentiable real funtions defined on the open interval $(\alpha,\beta)$, its derivative matrices are defined by $$\frac{d}{dx}A=\left[\frac{d}{dx}a_{ij}(x)\right],\;\frac{d}{dx}B=\left[\frac{d}{dx}b_{ij}(x)\right]$$ Using the product formula: $$A(x)B(x)=C(x)=[c_{ij}(x)] \quad \left(c_{ij}(x)=\sum_{k=1}^na_{ik}(x)b_{kj}(x) \right)$$
it is easy to prove the relation on $(\alpha,\beta)$ $$\frac{d}{dx}(AB)=\left(\frac{d}{dx}A\right)B+A \left(\frac{d}{dx}B\right) $$
as a consequence $$\frac{d}{dx}(AA^T)=\left(\frac{d}{dx}A\right)A^T+A\left(\frac{d}{dx}A^T\right)=\left(\frac{d}{dx}A\right)A^T+A\left(\frac{d}{dx}A\right)^T$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top