Derivative Help: Defining ((d/dx)-1)y & Proving Property

  • Thread starter Thread starter annoymage
  • Start date Start date
  • Tags Tags
    Derivative
annoymage
Messages
360
Reaction score
0

Homework Statement



let y be the function of x

how do i define ((d/dx)-1)y
is it dy/dx -y ? if so, which definition should i know to proof this property? help help
 
Physics news on Phys.org
You have defined a differential operator:
<br /> T=\frac{d}{dx}-1<br />
It is a linear operator, this is clear but it can be proven.
 
differential operator thanks, I'm looking forward to that, but before that,

what should i do to resolve ((d/dx)-1)x^2

how to do that?

2x-x^2?
 
Correct! Your differential operator says that given a function I should differentiate it and take away the original function.

Mat
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top