linuxux
- 133
- 0
Homework Statement
If y=\frac{1-2u}{1+u} and u=\sqrt{x^2-7}, find \frac{dy}{dx} at x=4
Homework Equations
quotient and chain rule
The Attempt at a Solution
so if f=y then y^{'}=f^{'} then f^{'} = \left( \frac{f}{g}\right)^{'} = \frac{f^{'}g - fg^{'}}{g^2}
and if f=1-2u then f^{'} = -\left( x^2 -7\right)^\frac{-1}{2} 2x
and if g=1+u then g^{'} = x\left( x^2 -7\right)^\frac{-1}{2}
and g^2 = x^2 + 2\sqrt{x^2 -7}-6
and now with chain rule:
\frac{dy}{dx}=\frac{dy}{du}\frac{du}{dx}=\left(\frac{-2\left(1+u\right)-\left(1-2u\right)}{\left(1+u\right)^{2}}\right)\left(x\left(x^{2}-7\right)^{\frac{-1}{2}}\right)
i think?
u in terms of x like this:
\frac{dy}{dx}=\frac{dy}{du}\frac{du}{dx}=\left(\frac{-2\left(1+\sqrt{x^2-7}\right)-\left(1-2\sqrt{x^2-7}\right)}{\left(1+\sqrt{x^2-7}\right)^{2}}\right)\left(x\left(x^{2}-7\right)^{\frac{-1}{2}}\right)
Last edited: