I Derivative of a Variation vs Variation of a Derivative

AI Thread Summary
The discussion centers on the justification for the interchange of variations and derivatives in classical field theory, specifically when varying a field. It is established that variations and derivatives commute when coordinates are held fixed during the variation process. This is demonstrated through the relationship between the variation of a field and its derivatives, showing that the change in the derivative of a field can be expressed in terms of the derivative of the variation. The clarification provided by haushofer emphasizes that the variation measures changes at fixed coordinate values, reinforcing the concept. Understanding the derivative as an independent vector field aids in grasping this relationship.
quickAndLucky
Messages
32
Reaction score
3
When a classical field is varied so that ##\phi ^{'}=\phi +\delta \phi## the spatial partial derivatives of the field is often written $$\partial _{\mu }\phi ^{'}=\partial _{\mu }(\phi +\delta \phi )=\partial _{\mu }\phi +\partial _{\mu }\delta \phi $$. Often times the next step is to switch the order of the variation and the partial derivative to get ##\partial _{\mu }\phi ^{'}=\partial _{\mu }\phi +\delta (\partial _{\mu }\phi )##. What justifies the replacement of ##\partial_{\mu }(\delta\phi )## by ##\delta (\partial _{\mu }\phi )##?
 
Physics news on Phys.org
Variations and derivatives commute if you keep your coordinates fixed during the variation. In deriving the Euler Lagrange eqns e.g. this is the case: the field variations involve functional variations.
 
  • Like
Likes quickAndLucky
haushofer said:
Variations and derivatives commute if you keep your coordinates fixed during the variation. In deriving the Euler Lagrange eqns e.g. this is the case: the field variations involve functional variations.
I guess my question is "why do variations and derivatives commute?"
 
quickAndLucky said:
I guess my question is "why do variations and derivatives commute?"
haushofer answered your question correctly. The variation \delta measures the change in the functional form of a field at a fixed coordinate value. So, if you define the field \psi_{\mu}(x) = \partial_{\mu}\phi (x), then it follows from the definition of \delta that \delta \psi_{\mu}(x) = \psi_{\mu}^{'}(x) - \psi_{\mu}(x), or
\delta (\partial_{\mu}\phi )(x) = \partial_{\mu}\phi^{'}(x) - \partial_{\mu}\phi(x) = \partial_{\mu}\left(\phi^{'} - \phi \right) (x) = \partial_{\mu}( \delta \phi )(x) .
 
  • Like
Likes quickAndLucky
Thinking of ##\partial _{\mu}\phi ## as an independent vector field that itself varies seemed to help! Thanks haushofer and samalkhaiat!
 
Thread 'Gauss' law seems to imply instantaneous electric field propagation'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Thread 'A scenario of non-uniform circular motion'
(All the needed diagrams are posted below) My friend came up with the following scenario. Imagine a fixed point and a perfectly rigid rod of a certain length extending radially outwards from this fixed point(it is attached to the fixed point). To the free end of the fixed rod, an object is present and it is capable of changing it's speed(by thruster say or any convenient method. And ignore any resistance). It starts with a certain speed but say it's speed continuously increases as it goes...
Maxwell’s equations imply the following wave equation for the electric field $$\nabla^2\mathbf{E}-\frac{1}{c^2}\frac{\partial^2\mathbf{E}}{\partial t^2} = \frac{1}{\varepsilon_0}\nabla\rho+\mu_0\frac{\partial\mathbf J}{\partial t}.\tag{1}$$ I wonder if eqn.##(1)## can be split into the following transverse part $$\nabla^2\mathbf{E}_T-\frac{1}{c^2}\frac{\partial^2\mathbf{E}_T}{\partial t^2} = \mu_0\frac{\partial\mathbf{J}_T}{\partial t}\tag{2}$$ and longitudinal part...
Back
Top