efekwulsemmay
- 53
- 0
Homework Statement
y=sec^{-1}\frac{1}{t}, 0<t<1
Homework Equations
\frac{d}{dx}sec^{-1} x= \frac{1}{\left|x\right|\cdot\sqrt{x^{2}-1}}
The Attempt at a Solution
Basically to simplify things I used u substitution so I let u=1/t then du/dt=-1/t2 and I got:
y=sec^{-1}u\rightarrow y^{,}=\frac{1}{\left|u\right|\cdot\sqrt{u^{2}-1}}\cdot\frac{du}{dt}
which,when I substituted for u, I got:
=\frac{1}{\left|\frac{1}{t}\right|\cdot\sqrt{\left(\frac{1}{t}\right)^{2}-1}}\cdot\frac{-1}{t^{2}}
which works out as:
=\frac{-1}{\left|\frac{1}{t}\right|\cdot t^{2}\cdot\sqrt{\frac{1^{2}}{t^{2}}-1}}
and:
=\frac{-1}{t\cdot\sqrt{1-t^{2}}}
however, the answer as per the back of the book is:
\frac{-1}{\sqrt{1-t^{2}}}
what did I do wrong?