Derivative of determinant wrt matrix

bakav
Messages
7
Reaction score
0
Hi there,
I want to derive the derivative of the det(A+O'XO) with respect to X, where A, O', O and X are all matrix.
Any suggestions,
Thanks
Baska
 
Physics news on Phys.org
First note that
det(A+O'XO) = exp(tr(log(A+O'XO)))

Then define the matrix partial derivative dX such that
dX tr(Xn) = n Xn-1
In terms of components, this means
(dX f(X))ij = dXji f(X)
where f(X) is an arbitrary scalar function of X or some component of a vector/matrix/tensor function of X.

Then we take the derivative
dX det(A+O'XO)
= dX exp(tr(log(A+O'XO)))
= exp(tr(log(A+O'XO))) dXtr(log(A+O'XO))
= det(A+O'XO) tr(dXlog(A+O'XO))
= det(A+O'XO) tr((A+O'XO)-1dX(A+O'XO))
= det(A+O'XO) O(A+O'XO)-1O'
= O adj(A+O'XO) O'

where adj(A) = det(A) A-1 is the http://en.wikipedia.org/wiki/Adjugate" of A. (Note that in older texts you see it called the adjoint - but that gets confusing with other adjoints).

Although the above definition goes via log(A+O'XO), the result does not require its existence. By looking at the definition of determinant, you can find it's derivative directly in terms of the adjugate. http://en.wikipedia.org/wiki/Determinant#Derivative
Note the transposition of the indices in their formula - which justifies my definition of matrix partial derivative.

Also see
http://en.wikipedia.org/wiki/Matrix_calculus#Derivative_of_matrix_determinant
 
Last edited by a moderator:
Thanks man
I also tried to use the general formula as:

d(det(Y))/dX=dtr(QY)/dX where Q is the det(Y)inv(Y) and apparently Y is a function of X.
I got the same derivation as you did.
Thanks a lot for your great help.
 
thanks dude appreciate it.
Can you guide me that how you got, in your derivation, from
= exp(tr(log(A+O'XO))) dXtr(log(A+O'XO)
= det(A+O'XO) tr(dXlog(A+O'XO))
= det(A+O'XO) tr((A+O'XO)-1dX(A+O'XO))
= det(A+O'XO) O(A+O'XO)-1O'
My question addresses how did you bring in the partial derivative dX to the trace function and then how you got rid of the trace in the last equation.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top