Derivative of Time Evolution Operator: Exp(-iHt)

aaaa202
Messages
1,144
Reaction score
2
For the time evolution operator:

exp(-iHt)

How do I take the derivative of an operator like this keeping the order correct? I mean I of course know how to differentiate an exponential function, but this is the exponential of an operator.
 
Physics news on Phys.org
You mean differentiating that with respect to ##t##? It's just ##\frac{d}{dt}e^{-iHt}=-iHe^{-iHt}=-ie^{-iHt}H##, because ##H## commutes with ##e^{-iHt}##. (you can see this by expanding the exponential to power series and noting that ##H## commutes with any power of itself)

If the problem were to differentiate ##e^{At}e^{Bt}##, where ##A## and ##B## are non-commuting operators, you would have to be more careful:

##\frac{d}{dt}\left(e^{At}e^{Bt}\right)=\left(\frac{d}{dt}e^{At}\right)e^{Bt}+e^{At}\left(\frac{d}{dt}e^{Bt}\right)=Ae^{At}e^{Bt}+e^{At}Be^{Bt}##.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top