abstrakt!
- 19
- 0
I am studying this from a book I found online, and I need a little bit of help.
Find the derivative when y(x)=\sin x
\frac{dy}{dx} \ = \ limit \ of \ \frac {\Delta y}{\Delta x} \ = \ \lim h \rightarrow 0 \ \frac{\sin(x+h)-\sin x}{h}
\sin(x+h)=\sin x \cos h + \cos x \sin h
\frac{\Delta y}{\Delta x} \ = \ \frac {\sin x \cos h + \cos x \sin h-\sin x}{h} \ = \ \sin x ( \frac{\cos h-1}{h}) + \cos x (\frac{\sin h}{h})
Homework Statement
Find the derivative when y(x)=\sin x
The Attempt at a Solution
\frac{dy}{dx} \ = \ limit \ of \ \frac {\Delta y}{\Delta x} \ = \ \lim h \rightarrow 0 \ \frac{\sin(x+h)-\sin x}{h}
\sin(x+h)=\sin x \cos h + \cos x \sin h
\frac{\Delta y}{\Delta x} \ = \ \frac {\sin x \cos h + \cos x \sin h-\sin x}{h} \ = \ \sin x ( \frac{\cos h-1}{h}) + \cos x (\frac{\sin h}{h})