Lancelot59
- 640
- 1
I'm unsure of my work when completing this problem:
y=e^{-x^{2}} \int^{x}_{0} e^{t^{2}} dt + c_{1}e^{-x^{2}}
I applied the product rule to the left bit.
\frac{dy}{dx}=e^{-x^{2}} e^{x^{2}} + e^{-x^{2}}(-2x)\int^{x}_{0} e^{t^{2}} dt + (-2x)c_{1}e^{-x^{2}}
I'm fairly certain I did this wrong.
y=e^{-x^{2}} \int^{x}_{0} e^{t^{2}} dt + c_{1}e^{-x^{2}}
I applied the product rule to the left bit.
\frac{dy}{dx}=e^{-x^{2}} e^{x^{2}} + e^{-x^{2}}(-2x)\int^{x}_{0} e^{t^{2}} dt + (-2x)c_{1}e^{-x^{2}}
I'm fairly certain I did this wrong.