I Derivatives for a density operator

Click For Summary
The discussion centers on the calculation of the density operator for a quantum state evolving over an infinitesimal change. The initial state is expressed as a sum of coefficients, and the density operator at a small increment is derived using both the exact state and an approximation involving derivatives. A conflict arises when the exact formulation indicates a pure state, while the derivative approach suggests non-purity due to neglected higher-order terms. It is clarified that the exact equality holds for the pure state, while the derivative method is an approximation that loses purity information. The resolution emphasizes the importance of using finite increments rather than infinitesimals to avoid confusion in the calculations.
Haorong Wu
Messages
417
Reaction score
90
TL;DR
How to properly calculate the derivatives for a density operator?
Hi. Suppose I have a state ##\left | \psi (0)\right >=\sum_m C_m \left | m\right >## evolving as $$\left | \psi (0+dz)\right>=\left | \psi (0)\right >+dz \sum_iD_i\left | i\right >=\sum_m C_m \left | m\right >+dz \sum_iD_i\left | i\right >=\sum_m( C_m+dz D_m)\left |m\right >.$$
Then the density operator at ##0+dz## is \begin{align}\rho(0+dz)&=\left | \psi (0+dz)\right>\left< \psi (0+dz)\right|=\sum_{mn}( C_m+dz D_m)( C^*_n+dz D^*_n)\left |m\right >\left< n\right|\nonumber \\&=\sum_{mn}(C_mC^*_n+dz(D_mC^*_n+C_mD^*_n)+dz^2D_mD^*_n)\left |m\right >\left< n\right|.\end{align}

I have seen in a paper, Roux F S. Infinitesimal-propagation equation for decoherence of an orbital-angular-momentum-entangled biphoton state in atmospheric turbulence[J]. Physical Review A, 2011, 83(5): 053822, that the author take the derivative of the density matrix as $$\partial_z \rho(z)=\sum_{mn}(D_mC^*_n+C_mD^*_n)\left |m\right >\left< n\right|,$$ i.e., terms with ##dz##.

Then when the author tries to recover the density matrix at some point ##z##, the result is given by just integrating the above derivative.

My question is from ##\rho(0+dz)=\left | \psi (0+dz)\right>\left< \psi (0+dz)\right|##, clearly, its a pure state, but if we calculate it from the derivative ##\rho(0+dz)=\rho(0)+dz \partial_z \rho(z)##, then it is not pure since terms with ##dz^2## is lost. Why there is a conflict? Should we discard terms with ##dz^2## or not?

Thanks!
 
Physics news on Phys.org
Haorong Wu said:
then it is not pure since terms with ##dz^2## is lost. Why there is a conflict?
A more correct way to do it is to avoid dealing with infinitesimal numbers ##dz##. The truncated Taylor expansion
$$\rho(z) = \rho(0)+\left.\frac{\partial\rho(z)}{\partial z}\right|_{z=0} z+{\cal O}(z^2)$$
is not necessarily pure. Only the full Taylor expansion is guaranteed to be pure. But if you are doing approximation for small (but finite!) ##z##, then a truncated expansion gives you approximate purity. The nonpurity is ##{\cal O}(z^2)##, which is consistent with expansion up to the terms linear in ##z##.

An apparent conflict in your computation arises from the fact that ##\rho(0+z)=|\psi(0+z)\rangle\langle\psi(0+z)|## is exact equality, while ##\rho(0+z)=\rho(0)+z\rho'(0)## is only an approximation. But to see that, you must work with finite ##z## (not with infinitesimal ##dz##, which, as a number, is not a well defined object).
 
Last edited:
For the quantum state ##|l,m\rangle= |2,0\rangle## the z-component of angular momentum is zero and ##|L^2|=6 \hbar^2##. According to uncertainty it is impossible to determine the values of ##L_x, L_y, L_z## simultaneously. However, we know that ##L_x## and ## L_y##, like ##L_z##, get the values ##(-2,-1,0,1,2) \hbar##. In other words, for the state ##|2,0\rangle## we have ##\vec{L}=(L_x, L_y,0)## with ##L_x## and ## L_y## one of the values ##(-2,-1,0,1,2) \hbar##. But none of these...

Similar threads