Derive the Maxwell "with source" equation

Click For Summary
The discussion focuses on deriving the Maxwell "with source" equation using the tensor equation involving the electromagnetic field tensor and current density. Participants analyze the variation of the action with respect to the four-potential, leading to complex integrals that need simplification. The divergence theorem is suggested as a potential method to relate the equations to charge density and current, although challenges arise in applying it effectively. Clarifications are made regarding the treatment of variations and the form of the current density for point particles. The conversation emphasizes the need for careful manipulation of terms to achieve the desired form of the equation.
LCSphysicist
Messages
644
Reaction score
162
Homework Statement
.
Relevant Equations
.
We need to derive the Maxwell "with source" equation, of course, using the tensor equation $$\partial F^{\mu v}/ \partial x^{v} = j^{\mu}/c$$

D is the spacetime dimension
To do this, it was said to us vary the action wrt the ##A^{\mu}##

1616792994917.png


The first term just vanish, and I want to evaluate the third term.
$$\frac{-1}{4c} \int d^{D}x (\partial_{\mu} \delta A_{v} - \partial_{v} \delta A_{\mu})(\partial^{\mu} \delta A^{v} - \partial^{v} \delta A^{\mu})$$
$$\frac{-1}{4c} \int d^{D}x 2((\partial_{\mu} \delta A_{v})(\partial^{\mu} \delta A^{v}) - (\partial_{\mu} \delta A_{v})(\partial^{v} \delta A^{\mu})$$
$$\frac{-1}{2c} \int d^{D}x (\partial_{\mu} \delta A_{v}) \delta F^{\mu v} *$$

After that equation, the things get pretty messy... My attempt was to find somewhere a way to apply the divergence theorem and get the flux, after that i would get the charge density and so the current, but i was not able to do that

OBS: in * i am considering that ##\partial \delta A = \delta \partial A##, but i am not sure 'bout that.
 
Physics news on Phys.org
That's fine, because you don't vary the space-time arguments ##x## in Hamilton's principle. However you wrote some ##\delta## too much. Note that ##\delta (F_{\mu \nu} F^{\mu \nu})=2 F_{\mu \nu} \delta F^{\mu \nu}=4 F_{\mu \nu} \delta \partial^{\mu} A^{\nu}## and now go on in calculating the variation such to make the integrand ##\propto \delta A^{\nu}##.

For the 2nd term, I'd write it out in explicit form. Also think about, how ##j^{\mu}(x)## looks for a single point particle!
 
At first, I derived that: $$\nabla \frac 1{\mu}=-\frac 1{{\mu}^3}\left((1-\beta^2)+\frac{\dot{\vec\beta}\cdot\vec R}c\right)\vec R$$ (dot means differentiation with respect to ##t'##). I assume this result is true because it gives valid result for magnetic field. To find electric field one should also derive partial derivative of ##\vec A## with respect to ##t##. I've used chain rule, substituted ##\vec A## and used derivative of product formula. $$\frac {\partial \vec A}{\partial t}=\frac...