Derive the Maxwell "with source" equation

LCSphysicist
Messages
644
Reaction score
162
Homework Statement
.
Relevant Equations
.
We need to derive the Maxwell "with source" equation, of course, using the tensor equation $$\partial F^{\mu v}/ \partial x^{v} = j^{\mu}/c$$

D is the spacetime dimension
To do this, it was said to us vary the action wrt the ##A^{\mu}##

1616792994917.png


The first term just vanish, and I want to evaluate the third term.
$$\frac{-1}{4c} \int d^{D}x (\partial_{\mu} \delta A_{v} - \partial_{v} \delta A_{\mu})(\partial^{\mu} \delta A^{v} - \partial^{v} \delta A^{\mu})$$
$$\frac{-1}{4c} \int d^{D}x 2((\partial_{\mu} \delta A_{v})(\partial^{\mu} \delta A^{v}) - (\partial_{\mu} \delta A_{v})(\partial^{v} \delta A^{\mu})$$
$$\frac{-1}{2c} \int d^{D}x (\partial_{\mu} \delta A_{v}) \delta F^{\mu v} *$$

After that equation, the things get pretty messy... My attempt was to find somewhere a way to apply the divergence theorem and get the flux, after that i would get the charge density and so the current, but i was not able to do that

OBS: in * i am considering that ##\partial \delta A = \delta \partial A##, but i am not sure 'bout that.
 
Physics news on Phys.org
That's fine, because you don't vary the space-time arguments ##x## in Hamilton's principle. However you wrote some ##\delta## too much. Note that ##\delta (F_{\mu \nu} F^{\mu \nu})=2 F_{\mu \nu} \delta F^{\mu \nu}=4 F_{\mu \nu} \delta \partial^{\mu} A^{\nu}## and now go on in calculating the variation such to make the integrand ##\propto \delta A^{\nu}##.

For the 2nd term, I'd write it out in explicit form. Also think about, how ##j^{\mu}(x)## looks for a single point particle!
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top