Derive the Venturi Meter eqn from the Bernoulli eqn

AI Thread Summary
The discussion revolves around deriving the Venturi meter equation from the Bernoulli equation while addressing issues with LaTeX formatting. The user identifies a contradiction in their equations, noting that pressure at point 2 (p2) must be less than at point 1 (p1) due to increased velocity, but their substitutions suggest otherwise. They seek clarification on expressing p1 in terms of other variables and relating p2 to another pressure term. Acknowledgment of the contradiction leads to a clearer understanding of the physical principles involved. The conversation highlights the importance of consistent variable definitions in fluid dynamics equations.
GreyNoise
Gold Member
Messages
32
Reaction score
6
Homework Statement
By applying Bernoulli's equation and the equation of continuity to points 1 and 2 of Fig. 16-14 [see attached file], show that the speed of the flow at the entrance is
v1 = a*sqrt{(2(dens' - dens)gh)/(dens(A^2-a^2))}
Relevant Equations
0.5*dens*v_1^2 + p_1 = 0.5*dens*v_2^2 + p_2 Bernoulii eqn
A*v_1 = a*v_2 continuity eqn
Advanced apologies for this format; I am posting my question as an the image b/c the Latex is being very buggy with me, and I lost a kind of lengthy post to it. Can anyone show me what I am doing wrong? I have attached a pdf version for easier reading if need be.
pr-43-p-290-h-r-text-ed.jpg
 

Attachments

Physics news on Phys.org
GreyNoise said:
1657147269864.png


From equation (1) you can see that ##p_2## must be less than ##p_1## because ##v_2 > v_1## (from the continuity equation). So, ##p_2 < p_1##.

However, in equation (2) you let ##p_1 = \rho g h## and ##p_2 =\rho' \, gh##.
But ##\rho' \, > \rho##. So, these substitutions would imply that ##p_2 > p_1##, which contradicts ##p_2 < p_1##. So, letting ##p_1 = \rho g h## and ##p_2 =\rho' \, gh## can't be correct.

Assume we can take points 1 and 2 to be at the same horizontal level:
1657148480656.png


Introduce the height ##H## as shown. Can you express ##p_1## in terms of ##p_c## , ##\rho##, ##g##, ##H##, and ##h##? Likewise, can you relate ##p_2## and ##p_d##?
 
Thnx so much for the response TNsy. Pointing out my contradiction between lines (1) and (2) was the big aha moment for me, and including the ##\rho gH## term makes the physical sense clear now.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top