Deriving Einstein Eq. from Variational Principle

Click For Summary
SUMMARY

The forum discussion centers on deriving the Einstein equation from the variational principle, specifically addressing the relationship between Christoffel symbols and variations of the metric tensor. The user presents calculations involving the equations \( g^{ab} \delta \Gamma_{bc}^a - g^{ad}\delta \Gamma_{ac}^c = g_{ab} \, \nabla^d \, \delta g^{ab} - \nabla_c \, \delta g^{dc} \) and the variation of the Christoffel symbol. The user identifies discrepancies in index matching during their derivation and seeks clarification on potential errors in their calculations. The discussion highlights the importance of correct index notation in tensor calculus.

PREREQUISITES
  • Understanding of tensor calculus, specifically Christoffel symbols
  • Familiarity with variational principles in physics
  • Knowledge of differential geometry and metric tensors
  • Proficiency in manipulating equations involving covariant derivatives
NEXT STEPS
  • Review the derivation of the Einstein-Hilbert action in general relativity
  • Study the properties and applications of Christoffel symbols in curved spacetime
  • Learn about covariant differentiation and its implications in tensor calculus
  • Explore advanced topics in differential geometry, such as Riemann curvature tensors
USEFUL FOR

Students and researchers in theoretical physics, particularly those focusing on general relativity and differential geometry, as well as anyone involved in advanced mathematical physics.

rezkyputra
Messages
5
Reaction score
2

Homework Statement


Okay, in Carrol's Intro to Spacetime and Geometry, Chapter 4, Eq. 4.63 to 4.65 require a derivation of a difference between Christoffel Symbol. I did the calculation and found my answer to be somewhat correct in form, but the indices doesn't match up

Homework Equations


So we need someway to change this prove this eq.
\begin{equation}
g^{ab} \delta \Gamma_{bc}^a - g^{ad}\delta \Gamma_{ac}^c = g_{ab} \, \nabla^d \, \delta g^{ab} - \nabla_c \, \delta g^{dc}
\end{equation}

also the variation of Chirstoffel Symbol is:

\begin{equation}
\delta \Gamma_{bc}^a = -\frac{1}{2} \left(g_{qc} \, \nabla_b \, \delta g^{aq} + g_{qb} \, \nabla_c \, \delta g^{aq} - g_{rb} \, g_{sc} \, \nabla^a \, \delta g^{rs} \right)
\end{equation}

The Attempt at a Solution


So first I'll break that into the first and second term

First Term
\begin{align}
\delta \Gamma_{bc}^a &= \frac{1}{2} \left( - g_{qb} \, \nabla_a \, \delta g^{dq} - g_{qa} \, \nabla_b \, \delta g^{dq} + g_{ra} \, g_{sb} \, \nabla^d \, \delta g^{rs} \right) \nonumber \\
g^{ab} \delta \Gamma_{bc}^a &= \frac{1}{2} \left( - g_{qb} \, g^{ab} \, \nabla_a \, \delta g^{dq} - g_{qa} \, g^{ab} \, \nabla_b \, \delta g^{dq} + g_{ra} \, g_{sb} \, g^{ab} \, \nabla^d \, \delta g^{rs} \right) \nonumber \\
g^{ab} \delta \Gamma_{bc}^a &= \frac{1}{2} \left( - g_{qb} \, g^{ab} \, \nabla_a \, \delta g^{dq} - g_{qa} \, g^{ab} \, \nabla_b \, \delta g^{dq} + g_{ra} \, g_{sb} \, \frac{1}{2} \left[g^{ab} + g^{ab} \right] \, \nabla^d \, \delta g^{rs} \right) \nonumber \\
&= \frac{1}{2} \left( - \delta_q^a \, \nabla_a \, \delta g^{dq} - \delta_q^b \, \nabla_b \, \delta g^{dq} + \frac{1}{2} \left[\delta_r^b \, g_{sb} + \delta_s^a \, g_{ra}\right] \, \nabla^d \, \delta g^{rs} \right) \nonumber \\
&= \frac{1}{2} \left(- \nabla_q \, \delta g^{dq} - \nabla_q \, \delta g^{dq} + \, g_{ab} \, \nabla^d \, \delta g^{ab} \right) \nonumber \\
&= - \nabla_q \, \delta g^{dq} + \frac{1}{2} \, g_{ab} \, \nabla^d \, \delta g^{ab} \nonumber \\
&q \ is \ "loose" \ so \ just \ set \ it \ equal \ to \ c \\
&= - \nabla_c \, \delta g^{dc} + \frac{1}{2} \, g_{ab} \, \nabla^d \, \delta g^{ab} \nonumber \\
\end{align}

Second Term

\begin{align}
- \delta \Gamma_{ac}^c &= \frac{1}{2} \left(g_{qc} \, \nabla_a \, \delta g^{cq} + g_{qa} \, \nabla_c \, \delta g^{cq} - g_{ra} \, g_{sc} \, \nabla^c \, \delta g^{rs} \right) \nonumber \\
- g^{ad}\delta \Gamma_{ac}^c &= \frac{1}{2} \left(g_{qc} \, g^{ad} \, \nabla_a \, \delta g^{cq} + g_{qa} \, g^{ad} \, \nabla_c \, \delta g^{cq} - g_{ra} \, g_{sc} \, g^{ad} \, \nabla^c \, \delta g^{rs} \right) \nonumber \\
&= \frac{1}{2} \left(g_{qc} \, \nabla^d \, \delta g^{cq} + \delta_q^d \, \nabla_c \, \delta g^{cq} -\delta_r^d \, \nabla_s \, \delta g^{rs} \right) \nonumber \\
&= \frac{1}{2} \left(g_{qc} \, \nabla^d \, \delta g^{cq} + \nabla_c \, \delta g^{cd} - \nabla_s \, \delta g^{ds} \right) \nonumber \\
&s \ is \ "loose" \ so \ just \ set \ it \ equal \ to \ c \\
&= \frac{1}{2} g_{qc} \, \nabla^d \, \delta g^{cq}
\end{align}

Now those two term adds up into

\begin{align}
&= \frac{1}{2} g_{qc} \, \nabla^d \, \delta g^{cq} + \frac{1}{2} \, g_{ab} \, \nabla^d \, \delta g^{ab} - \nabla_c \, \delta g^{dc}
\end{align}

Soo the last term is correct, but the first two, whila having the same form as the answer, their indices doesn't add up (i think)

so did i miss something? or are there anything wrong in my calculation?

Thanks in advance
 
Physics news on Phys.org
Welcome to PF!
rezkyputra said:

Homework Equations


So we need someway to change this prove this eq.
\begin{equation}
g^{ab} \delta \Gamma_{bc}^a - g^{ad}\delta \Gamma_{ac}^c = g_{ab} \, \nabla^d \, \delta g^{ab} - \nabla_c \, \delta g^{dc}
\end{equation}
First term on left is not written correctly. You have ##a## as an upper index twice.

The Attempt at a Solution


So first I'll break that into the first and second term

First Term
\begin{align}
\delta \Gamma_{bc}^a &= \frac{1}{2} \left( - g_{qb} \, \nabla_a \, \delta g^{dq} - g_{qa} \, \nabla_b \, \delta g^{dq} + g_{ra} \, g_{sb} \, \nabla^d \, \delta g^{rs} \right) \nonumber \\

\end{align}
You have ##a## as an upper index on the left but lower on the right.
 
Okay, it was a typo, i got it correct indices on my notes

so let me retype it

\begin{align}
\delta \Gamma_{ab}^d &= \frac{1}{2} \left( - g_{qb} \, \nabla_a \, \delta g^{dq} - g_{qa} \, \nabla_b \, \delta g^{dq} + g_{ra} \, g_{sb} \, \nabla^d \, \delta g^{rs} \right) \nonumber \\
g^{ab} \delta \Gamma_{ab}^d &= \frac{1}{2} \left( - g_{qb} \, g^{ab} \, \nabla_a \, \delta g^{dq} - g_{qa} \, g^{ab} \, \nabla_b \, \delta g^{dq} + g_{ra} \, g_{sb} \, g^{ab} \, \nabla^d \, \delta g^{rs} \right) \nonumber \\
g^{ab} \delta \Gamma_{ab}^d &= \frac{1}{2} \left( - g_{qb} \, g^{ab} \, \nabla_a \, \delta g^{dq} - g_{qa} \, g^{ab} \, \nabla_b \, \delta g^{dq} + g_{ra} \, g_{sb} \, \frac{1}{2} \left[g^{ab} + g^{ab} \right] \, \nabla^d \, \delta g^{rs} \right) \nonumber \\
&= \frac{1}{2} \left( - \delta_q^a \, \nabla_a \, \delta g^{dq} - \delta_q^b \, \nabla_b \, \delta g^{dq} + \frac{1}{2} \left[\delta_r^b \, g_{sb} + \delta_s^a \, g_{ra}\right] \, \nabla^d \, \delta g^{rs} \right) \nonumber \\
&= \frac{1}{2} \left(- \nabla_q \, \delta g^{dq} - \nabla_q \, \delta g^{dq} + \, g_{ab} \, \nabla^d \, \delta g^{ab} \right) \nonumber \\
&= - \nabla_q \, \delta g^{dq} + \frac{1}{2} \, g_{ab} \, \nabla^d \, \delta g^{ab} \nonumber \\
\label{eq:8}
&= - \nabla_c \, \delta g^{dc} + \frac{1}{2} \, g_{ab} \, \nabla^d \, \delta g^{ab}
\end{align}

Second Term
\begin{align}
- \delta \Gamma_{ac}^c &= \frac{1}{2} \left(g_{qc} \, \nabla_a \, \delta g^{cq} + g_{qa} \, \nabla_c \, \delta g^{cq} - g_{ra} \, g_{sc} \, \nabla^c \, \delta g^{rs} \right) \nonumber \\
- g^{ad}\delta \Gamma_{ac}^c &= \frac{1}{2} \left(g_{qc} \, g^{ad} \, \nabla_a \, \delta g^{cq} + g_{qa} \, g^{ad} \, \nabla_c \, \delta g^{cq} - g_{ra} \, g_{sc} \, g^{ad} \, \nabla^c \, \delta g^{rs} \right) \nonumber \\
&= \frac{1}{2} \left(g_{qc} \, \nabla^d \, \delta g^{cq} + \delta_q^d \, \nabla_c \, \delta g^{cq} -\delta_r^d \, \nabla_s \, \delta g^{rs} \right) \nonumber \\
&= \frac{1}{2} \left(g_{qc} \, \nabla^d \, \delta g^{cq} + \nabla_c \, \delta g^{cd} - \nabla_s \, \delta g^{ds} \right) \nonumber \\
\label{eq:9}
&= \frac{1}{2} g_{qc} \, \nabla^d \, \delta g^{cq}
\end{align}

they both still doesn't prove this eq

\begin{equation}
\label{eq:10}
g^{ab} \delta \Gamma_{ab}^d - g^{ad}\delta \Gamma_{ac}^c = g_{ab} \, \nabla^d \, \delta g^{ab} - \nabla_c \, \delta g^{dc}
\end{equation}

They still doesn't add up!
 
I believe eq's 8 and 9 do add to give eq. 10.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
6K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K