I Deriving EM Energy Conservation from Lagrangian

progato
Messages
2
Reaction score
0
I'm trying to derive the conservaton of energy for electromagnetic fields with currents from the action principle, but I have some trouble understanding how the interaction term in the Lagrangian fits into this.

The approach I have seen so far has been to express the Lagrangian density as $$\mathcal{L}(x^\alpha, A_\alpha, \partial_\beta A_\alpha) = \mathcal{L}_{field} + \mathcal{L}_{int} = -\frac {1} {4\mu_0}F^{\alpha \beta}F_{\alpha \beta} - A_\alpha J^\alpha$$ and then derive the equations of motion from that in the usual way. This leads to Maxwell's equations.

The problem I have with this approach is that ##J^\alpha(x)## depends on the space-time coordinates. This means that the Lagrangian is not invariant with respect to time and I cannot derive energy conservation using time translational symmetry. Without the interaction term, this works fine.

The above Lagrangian only describes the motion of ##A_\alpha##. Is there a way to formulate a Lagrangian that describes how ##A_\alpha## and ##J^\alpha## evolves together?
 
Physics news on Phys.org
Sure, there's exchange of energy, momentum, and angular momentum between the em. field and the charges. You can derive the expressions for the appropriate energy-momentum and angular-momentum densities (modulo total divergences which are fixed by the demand of gauge invariance, which leads from the canonical to the Belinfante energy-momentum tensor and the usual relation of it to the angular-momentum tensor) of the em. field. Then including the interactions with the charges leads to the additional terms in the energy-momentum-angular-momentum balance equations of the electromagnetic field, leading to the correct Lorentz-force form of the equation of motion.
 
Thanks for your reply. Unfortunately, it is a little over my head. In particular, I had not heard of the Belinfante energy-momentum tensor until just now. I know how to derive the canonical energy-momentum tensor from the lagrangian density though. I am basically at the level where I can understand the "Theoretical Minimum" lectures or "The Variational Principles of Mechanics" as well as some differential geometry.

Do you mind elaborating a bit or provide pointers where I can find more information?
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
Back
Top