What you are considering is a two or three spatial dimensional representation of the scenario. What you are seeing is the projection of four dimensional spacetime onto two or three spatial dimensions. In four dimensional spacetime, which we cannot visualize, the origins remain coincident. The coincidence of the emission and the origins is a spacetime event and cannot move in space or time as it has no spatial or temporal extension.
The apparent movement in these projections is because the moving observer assigns to the event chageing coordinate values. Same event, differing assigned coordinates. This reprentation makes no claims about the centrality of the moving observer with respect to the light circle (sphere), in fact in this representation the moving observer does not remain central to the expanding CIRCLE of light represented in the same diagram. It is not expected to. However, interchange the observers and the situation is reversed. The other one now is represented as central. Each observer remains central from his own viewpoint. There is nothing to resolve, this representation is exactly as expected for the given scenario.
The best representation, though not perfect, is the projection of the cross sections of the light cone onto the x/y plane. In this representation the event is represented as the origin of a light cone, the same light cone for both observers and emitter, it does not matter if one of the observers is the emittrer or whether the emitter is considered to be moving or not. But although they all share the same light cone, the cross sections of the expanding light cone, which represent the planes of simultaneity for the two observers, are not the same shape when projected on to the x/y axes. One of cross sections is circular and one is not, as it is tilted at an angle in the cone representation. The tilted one represents the plane of simultaneity of the moving observer in moving observer's frame. The tilted one shows, in the three dimensional light cone representation, one extreme of the cross section as being lower down the time axis of the stationary observer than the other extreme. This means that the times at which the light front reaches points on the perimeter of the projection of that cross section are not simultaneous in the stationary observer's frame and so the moving observer is not considered to be central according to the stationary observer. But for the circular cross section they are simultaneous and so the stationary observer considers himself central. The difference reflects the relative motion of the observers. We are at liberty to take either as being at rest and changeing the drawing to suit. The effects are reciprocal.
Matheinste.