An Action for Einstein-Cartan?
I don't think it's a trivial problem. One approach might be to take the curvature scalar corresponding to the Levi-Civita connection. When written out in terms of the native connection, this becomes a rather complicated expression involving not just the curvature tensor, but the contorsion and its first derivatives.
Another alternative is to just take the curvature scalar for the native connection and tetrad, itself, as the Lagrangian. The tetrad comes in this quadratically, along with the determinant of the tetrad inverse. The latter gives you a -(metric) x (curvature scalar), the former gives you a +2 (Ricci tensor); when you vary the tetrad.
When you vary the connection, you get the equations relating torsion. For the free field, this results in zero torsion. For coupled fields, I don't know exactly what will happen, since I don't know how the spin tensor is derived from the matter Lagrangian (e.g. is it the variation with respect to the connection?)
In this vein, a different approach was advocated in LNP 107. It differed from Einstein-Cartan in taking the torsion as 0, but the connection as non-metrical. It most interesting feature is that gravity does not enter fundamentally into the picture at all! Instead, the curvature scalar pops up via a partial Legendre transform of the matter Lagrangian.
It might be possible to modify the treatment in LNP 107 to fit Einstein-Cartan; arriving at a similar result. But this requires altering substantial parts of the original text; and the expressions become quite a bit more complex, not explicitly involving torsion.
As to the first idea: I don't know what will happen if you use the curvature scalar for the Levi-Civita tensor expressed in terms of the native connection and [con]torsion.
I've run into a problem similar to that discussed in this thread in the process of trying to implement the idea of gauging a doubly-affine extension of GL(4) that incorporates the Heisenberg algebra for its two generators. What's interesting about this field theory is that for its potentials, you get two sets of "tetrad" fields, whose contraction gives you a rank-2 tensor (i.e., a native "metric") -- however, generally anti-symmetric. There are 16+4+4+1 generators, the field strength corresponding to the last one gives you, essentially, the anti-symmetric part of this "native metric".
It looks a lot like Einstein's old anti-symmetric metric theory ... but now formulated on more solid ground as a gauge theory for this doubly-affine extension of GL(4).
Reference:
LNP 107
Lecture Notes in Physics, 107 (Kijowski, Tulczyjew, 1979)
https://www.amazon.com/dp/0387095381/?tag=pfamazon01-20