Werg22
- 1,431
- 1
Given the sum
{_\lim {i} \rightarrow 0} \sum_{k=0}^{\frac{x}{i} - 1} i\sqrt{1 + i^{2n-2}((k+1)^{n} - k^{n})^{2}}
I want to know how to derive to the value of this sum exactly. This is actually the value of the lenghts of a curve from a point to the origin of the form f(x) = x^n... I thought the binominal theorem can be used, but i can't develop on this further more. Anyone is capable of showing to what value this converges?
{_\lim {i} \rightarrow 0} \sum_{k=0}^{\frac{x}{i} - 1} i\sqrt{1 + i^{2n-2}((k+1)^{n} - k^{n})^{2}}
I want to know how to derive to the value of this sum exactly. This is actually the value of the lenghts of a curve from a point to the origin of the form f(x) = x^n... I thought the binominal theorem can be used, but i can't develop on this further more. Anyone is capable of showing to what value this converges?
Last edited: