Describing the goodness of fit of a model

  • Thread starter Thread starter McKendrigo
  • Start date Start date
  • Tags Tags
    Fit Model
McKendrigo
Messages
25
Reaction score
0
Describing the "goodness of fit" of a model

Hi there,

I would like to ask advice on an appropriate way to define how well a measurement 'matches up' to the predicted response. In other words, I have a set of data for bandwidth measurement for an LED (amplitude vs. frequency). I also have a predicted response, from a simple equation:

M(f) = \sqrt{3}/2* \pi *\tau *f

Where M(f) is the amplitude at a given frequency, and Tau is the LED time constant.

I'd like to know a good way to quantify how well the curve of measured values matches the curve of predicted values, so that I can quantify the 'goodness' of the model depending on different Tau values and so on.

Any guidance would be appreciated!
 
Physics news on Phys.org


Can you post your model? What are the variables, and what are the parameters?

[Edit: the "usual" goodness-of-fit measure is the R-squared statistic, the ratio of variance explained by the model to the total variance of the "left-hand side" variable.]
 
Last edited:


The classical R^2 is not useful in situations where there is no intercept term. However, I don't get the sense that you did a regression to get this equation? If this is not a regression problem, you might look at the maximum absolute error between your predictions and actual values.
What other information can you give about this problem?
 


Hi guys,

Thanks for your replies, sorry for taking so long to get back to you!

I don't think I was totally clear with my question - I have an equation which describes the frequency response of a light-emitting material (shown above). A value for Tau has been found for this material, so using the equation I can predict the frequency response of the material.

I have separately measured the actual frequency response of the material. I am not fitting the equation to the data, in fact, I am merely plotting the measured and predicted responses to see how well they agree. In other words, I'd like a way of quantifying how well the 'guess curve' and the 'measured curve' agree. At the moment, the error between the predicted and measured -3dB points taken from the curves is the best way I can think of quantifying the agreement.

Specifying the maximum absolute error sounds like a sensible approach.
 


Perhaps you can use the root mean square deviation (RMSD) between your model and the data. That is, for every data point, take the difference between that data point and its expected value from the model and square that difference. Then average these squares of differences across the data set and take the square root of the average.

Alternatively, for a dimensionless quantity, you could divide the differences by the observed measurement prior to squaring.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Back
Top