MHB Destination Points in Harmonic Sequences

wheepep
Messages
9
Reaction score
0
View attachment 6244

The pattern above will continue for all values of the harmonic sequence.

Will a destination point be reached for any value of θ where 0 ≤ θ < 2𝜋?

(I know it won’t for θ = 0)

Is there a function which contains the set of all destination points?
 

Attachments

  • Screen Shot 2016-11-29 at 7.05.10 PM.png
    Screen Shot 2016-11-29 at 7.05.10 PM.png
    6 KB · Views: 159
Mathematics news on Phys.org
wheepep said:
The pattern above will continue for all values of the harmonic sequence.

Will a destination point be reached for any value of θ where 0 ≤ θ < 2𝜋?

(I know it won’t for θ = 0)

Is there a function which contains the set of all destination points?
The answer is Yes. If $0<\theta<2\pi$ then the path will converge to a limit point, which you can find by using complex numbers.

The limit point will be the sum of the series $1 + \tfrac12e^{i\theta} + \tfrac13e^{2i\theta} + \tfrac14e^{3i\theta} + \ldots$. You can sum that series using the power series expansion $\log(1-x) = -x - \frac12x^2 - \frac13x^3 - \ldots$, like this: $$\begin{aligned}1 + \tfrac12e^{i\theta} + \tfrac13e^{2i\theta} + \tfrac14e^{3i\theta} + \ldots &= e^{-i\theta}\sum_1^\infty\frac{e^{in\theta}}n \\ &= -e^{-i\theta}\log\bigl(1 - e^{i\theta}\bigr) \\ &= -e^{-i\theta}\log(1 - \cos\theta - i\sin\theta) \\ &= -e^{-i\theta}\log\bigl( 2\sin^2\tfrac\theta2 - 2i\sin\tfrac\theta2\cos\tfrac\theta2 \bigr) \\ &= -e^{-i\theta}\log\Bigl(2\sin\tfrac\theta2 \cdot e^{i(\theta - \pi)/2}\Bigr) \\ &= (-\cos\theta + i\sin\theta) \bigl(\log \bigl( 2\sin\tfrac\theta2\bigr) + i\tfrac12(\theta - \pi)\bigr) \end{aligned}$$ In terms of coordinates, this shows that your "destination point" is the point $$\Bigl(-\cos\theta\log \bigl( 2\sin\tfrac\theta2\bigr) + \tfrac12(\pi - \theta)\sin\theta\,,\, \sin\theta\log \bigl( 2\sin\tfrac\theta2\bigr) + \tfrac12(\pi - \theta)\cos\theta \Bigr).$$ That looks complicated. But I think it is probably correct because it gives the right result $(\log2,0)$ when $\theta = \pi$. (In that case, the series just becomes $1-\frac12 + \frac13 - \ldots$, which converges to $\log2$ on the real axis.)

If you are asking for a function that has this set of points as its graph, I think you can see that this would be a pretty hard problem. (Worried)
 
That's great. Thanks!
 
Hey wheepep! ;)

Here's the graph of the limit points based on Opalg's formula:

\begin{tikzpicture}
%preamble \usepackage{pgfplots}
\begin{axis}[xmin=0, grid=both, axis lines=middle, axis equal, xlabel=$x$, ylabel=$y$]
\addplot[ultra thick, red, domain=0:3.142, variable=t, samples=51]
( {-cos(deg(t))*ln(2*sin(deg(t/2)))+1/2*(pi-t)*sin(deg(t))},
{sin(deg(t))*ln(2*sin(deg(t/2)))+1/2*(pi-t)*cos(deg(t))} );
\addplot[red, mark=ball] coordinates {({pi/4}, {ln(2)/2})} node[above left] {$\theta=\pi/2$};
\addplot[red, mark=ball] coordinates {(ln(2), 0)} node[above left] {$\theta=\pi$};
\end{axis}
\end{tikzpicture}

In particular we can see that Leibniz series is also in there for $\theta=\frac\pi 2$ with $x=1-\frac 13 + \frac 15 - ... =\frac \pi 4$.
That limit point has $y=\frac 12 - \frac 14 + \frac 16 - ... = \frac 12(1-\frac 12 +\frac 13 - ...)= \frac 12 \ln 2$, which is half of the Alternating harmonic series.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top