Determine all postive integer k

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integer
Click For Summary
SUMMARY

The discussion focuses on determining all positive integers \( k \) for which the function \( f(k) = \left\lfloor \frac{k}{\left\lfloor \sqrt{k} \right\rfloor} \right\rfloor \) satisfies the condition \( f(k) > f(k+1) \). Participants confirm that for \( k = n^2 + a \) with \( 0 < a < 2n \), the function simplifies to \( f(k) = n + \left\lfloor \frac{a}{n} \right\rfloor \), indicating that \( f(k) \) is non-decreasing. The conclusion is that the proof of this property is straightforward and does not present significant challenges.

PREREQUISITES
  • Understanding of floor functions and their properties
  • Basic knowledge of integer sequences and inequalities
  • Familiarity with square roots and their integer parts
  • Experience with mathematical proofs and logical reasoning
NEXT STEPS
  • Explore the properties of floor functions in number theory
  • Investigate the behavior of sequences defined by floor functions
  • Learn about non-decreasing functions and their implications in mathematics
  • Study proofs involving inequalities and integer partitions
USEFUL FOR

Mathematicians, students studying number theory, and anyone interested in the properties of functions involving floor operations and integer sequences.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Determine all positive integers $k$ for which $f(k)>f(k+1)$ where $f(k)=\left\lfloor{\dfrac{k}{\left\lfloor{\sqrt{k}}\right\rfloor}}\right\rfloor$ for $k\in \Bbb{Z}^*$.
 
Mathematics news on Phys.org
anemone said:
Determine all positive integers $k$ for which $f(k)>f(k+1)$ where $f(k)=\left\lfloor{\dfrac{k}{\left\lfloor{\sqrt{k}}\right\rfloor}}\right\rfloor$ for $k\in \Bbb{Z}^*$.

if k+1 is not a perfect square then the floor of square root of k and k+ 1 are same so
f(x) < f(x+1)
so we need to look at k+1 being a perfect square say $n^2$
$f(k) = \left\lfloor\dfrac{n^2-1}{n-1}\right\rfloor= n + 1$
$f(k+1) = \left\lfloor\dfrac{n^2}{n}\right\rfloor= n$
so k is of the form $n^2-1$ for $n\gt 1$
 
kaliprasad said:
if k+1 is not a perfect square then the floor of square root of k and k+ 1 are same so
f(x) < f(x+1)
so we need to look at k+1 being a perfect square say $n^2$
$f(k) = \left\lfloor\dfrac{n^2-1}{n-1}\right\rfloor= n + 1$
$f(k+1) = \left\lfloor\dfrac{n^2}{n}\right\rfloor= n$
so k is of the form $n^2-1$ for $n\gt 1$

Hey kaliprasad, thanks for participating and your answer is correct! I think it might be necessary(?) to prove that for $k=n^2+a$ with $0<a<2n$,

$f(k)=\left\lfloor{\dfrac{n^2+a}{n}}\right\rfloor=n+\left\lfloor{\dfrac{a}{n}}\right\rfloor$ which is non-decreasing.

But then this is an easy proof, so, there is no big deal here.:)
 
anemone said:
Hey kaliprasad, thanks for participating and your answer is correct! I think it might be necessary(?) to prove that for $k=n^2+a$ with $0<a<2n$,

$f(k)=\left\lfloor{\dfrac{n^2+a}{n}}\right\rfloor=n+\left\lfloor{\dfrac{a}{n}}\right\rfloor$ which is non-decreasing.

But then this is an easy proof, so, there is no big deal here.:)
Hello Anemone,
Both are effectively same as $k= n^2+ a$ with $0\lt a\lt2n$ is same as k+1 is not perfect square and I have mentioned that numerator is increasing and denominator is constant and I should have said $f(x) \le f(x+1)$ instead of $f(x) \lt f(x+1)$
 

Similar threads

Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
1K