MHB Determine co-ordinates of points B?

  • Thread starter Thread starter ai93
  • Start date Start date
  • Tags Tags
    Points
AI Thread Summary
The discussion revolves around finding the coordinates of point B, where the line with the equation y=2x+11 intersects with the line y=x+8. To determine point B, the two equations are set equal, leading to the solution x=-3 and subsequently y=5, giving the coordinates of point B as (-3, 5). Additionally, the discussion touches on calculating the distance between points A and B and finding the gradient between them, with the slope calculated as 2. The necessity of using the distance formula is clarified, as it relates to finding the length of the segment between points A and B.
ai93
Messages
54
Reaction score
0
I have an equation of a line question

a) Find the equation of the straight line with gradient 2 passing through point A (-4,3)

I worked out the equation of the line, which is, y=2x+11.
But having trouble with question b) and c)

b) if the line in part a) intersects the line y=x+8 at point B, determine the co-ordinates of point B.

c) Find
i) the length
ii) the gradient
 
Mathematics news on Phys.org
a) This is the correct line. (Yes)

b) Okay, you have two lines:

$$y=2x+11\tag{1}$$

$$y=x+8\tag{2}$$

To find the coordinates of point $B$, where the two lines intersect, you must solve the simultaneous system above. Since we have both lines in function form, we can just equate the two:

$$2x+11=x+8$$

Solve this for $x$, and then substitute the resulting value for $x$ into either (1) or (2) to get the $y$-coordinate.

For part c), I am assuming you are to find the distance between $A$ and $B$, and the gradient or slope between the two points.

Distance formula:

$$d=\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}$$

Slope formula:

$$m=\frac{\Delta y}{\Delta x}=\frac{y_2-y_1}{x_2-x_1}$$

Can you proceed?
 
MarkFL said:
a) This is the correct line. (Yes)

b) Okay, you have two lines:

$$y=2x+11\tag{1}$$

$$y=x+8\tag{2}$$

To find the coordinates of point $B$, where the two lines intersect, you must solve the simultaneous system above. Since we have both lines in function form, we can just equate the two:

$$2x+11=x+8$$

Solve this for $x$, and then substitute the resulting value for $x$ into either (1) or (2) to get the $y$-coordinate.

For part c), I am assuming you are to find the distance between $A$ and $B$, and the gradient or slope between the two points.

Distance formula:

$$d=\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}$$

Slope formula:

$$m=\frac{\Delta y}{\Delta x}=\frac{y_2-y_1}{x_2-x_1}$$

Can you proceed?
Thanks!

$$2x+11=x+8$$

$$2x-x=8-11$$

$$\therefore x=-3$$

sub $$x=-3 into y=2x+11$$

= y=5

for c) Why is finding the distance necessary? Since we have to use the gradient/slope formula?

Nevertheless

m=$$\frac{5-3}{(-3)-(-4)}$$

m=2

:D
 
Yes, everything looks correct. :D

You asked why do we need the distance formula...well, you originally posted that you need the length, and I assume you are being asked to find the length of line segment $\overline{AB}$.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top