MHB Determine the Average Rate of Change

eleventhxhour
Messages
73
Reaction score
0
Determine the average rate if change of the function y = 2cos(x - $\pi$/3) + 1 for the interval $\pi$/3 $\le$ x $\le$ $\pi$/2

I tried finding the exact values of the two (0 and 0.5) and subbing them into the AROC equation but I keep getting the wrong answer (1.4)
 
Mathematics news on Phys.org
We find:

$$\frac{\Delta y}{\Delta x}=\frac{y\left(\dfrac{\pi}{2}\right)-y\left(\dfrac{\pi}{3}\right)}{\dfrac{\pi}{2}-\dfrac{\pi}{3}}=\frac{\left(2\cos\left(\dfrac{\pi}{6}\right)+1\right)-\left(2\cos\left(0\right)+1\right)}{\dfrac{\pi}{6}}=\frac{6\left(\sqrt{3}-1\right)}{\pi}\approx1.39811405542801$$
 
MarkFL said:
We find:

$$\frac{\Delta y}{\Delta x}=\frac{y\left(\dfrac{\pi}{2}\right)-y\left(\dfrac{\pi}{3}\right)}{\dfrac{\pi}{2}-\dfrac{\pi}{3}}=\frac{\left(2\cos\left(\dfrac{\pi}{6}\right)+1\right)-\left(2\cos\left(0\right)+1\right)}{\dfrac{\pi}{6}}=\frac{6\left(\sqrt{3}-1\right)}{\pi}\approx1.39811405542801$$

Okay, that's what I got. The textbook has it as -0.5157 so I guess it's just wrong?
 
We both made an error...it should be:

$$\frac{\Delta y}{\Delta x}=\frac{6\left(\sqrt{3}-2\right)}{\pi}\approx-0.511745261674736$$

I discovered my error when graphing the function and the resulting secant line:

View attachment 3547
 

Attachments

  • aroc.png
    aroc.png
    13.9 KB · Views: 92
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
4
Views
1K
Replies
1
Views
2K
Replies
5
Views
3K
Replies
8
Views
3K
Replies
1
Views
2K
Replies
7
Views
2K
Replies
4
Views
1K
Back
Top