MHB Determine Y of New Coordinate with -6 db/octave Slope on Log Plot

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Slope
AI Thread Summary
To determine the new coordinate on a log plot with a slope of -6 dB/octave starting from the point (10^2, 100), the second coordinate at (10^3) would be (10^3, 80 dB). This is based on the understanding that a slope of -6 dB/octave translates to -20 dB/decade. Following this, if the slope changes to -12 dB/octave, the next coordinate at (10^4) would be (10^4, 60 dB). The discussion clarifies the relationship between slope and dB values across logarithmic scales. Accurate calculations are essential for determining the correct y-values at specified x-coordinates.
Dustinsfl
Messages
2,217
Reaction score
5
On a log plot in the x axis, if I have a slope of -6 db/octave from 100db, what would be the location of the new coordinate?

So the y-axis is db and the x-axis is in log.

First coordinate is \((10^2, 100)\) then a slope of -6. The second coordinate is \((10^3, ?)\)?

How does one determine the y location?
 
Mathematics news on Phys.org
dwsmith said:
On a log plot in the x axis, if I have a slope of -6 db/octave from 100db, what would be the location of the new coordinate?

So the y-axis is db and the x-axis is in log.

First coordinate is \((10^2, 100)\) then a slope of -6. The second coordinate is \((10^3, ?)\)?

How does one determine the y location?

A slope of - 6 dB/octave is equivalent to a slope of -20 dB/decade...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
A slope of - 6 dB/octave is equivalent to a slope of -20 dB/decade...

Kind regards

$\chi$ $\sigma$

Then \((10^3, 80)\), and if I had a slope of -12 following, it would be \((10^4, 40)\), correct?
 
dwsmith said:
Then \((10^3, 80)\), and if I had a slope of -12 following, it would be \((10^4, 40)\), correct?...

Not exactly... $\displaystyle (10^{3}, 80\ \text{dB})$ is correct and -20 dB\decade means $\displaystyle (10^{4}, 60\ \text{dB})$, $\displaystyle (10^{5}, 40\ \text{dB})$, etc...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
Not exactly... $\displaystyle (10^{3}, 80\ \text{dB})$ is correct and -20 dB\decade means $\displaystyle (10^{4}, 60\ \text{dB})$, $\displaystyle (10^{5}, 40\ \text{dB})$, etc...

Kind regards

$\chi$ $\sigma$

You said -6 is -20 so wouldn't -12 be -40?
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top