Hart
- 168
- 0
Homework Statement
Determing the constant c such that \psi_{c}(x,y,z) = x^{2}+cy^{2} is an eigenfunction of \hat{L_{z}}
Homework Equations
\hat{L_{z}} = -i \hbar (x\frac{\partial \psi}{\partial y} - y\frac{\partial \psi}{\partial x}
The Attempt at a Solution
x\frac{\partial \psi}{\partial y} - y\frac{\partial \psi}{\partial x}) = 2x^{2}-2y^{2}c
Therefore:
\hat{L_{z}} \psi = -i \hbar (2x^{2}-2y^{2}c) = -2i \hbar (x^{2}-y^{2}c)
.. and now I'm stuck. :|