Determining if Subset is a Subgroup by using Group Presentation

Bacle
Messages
656
Reaction score
1
Hi, Algebraists:

Say I'm given a group's presentation G=<X|R>, with

X a finite set of generators, R the set of relations. A couple of questions, please:

i)If S is a subset of G what condition must the generators of

S satisfy for S to be a subgroup of G ? I know there is a condition

that if for any a,b in S, then S is a subgroup of G if ab^-1 is in S, but

I am tryng to work only with the generating set.

ii) If A,B are known to be subgroups of G; G as above: what

condition do I need on the generators of A,B respectively,

in order to tell if A is a subgroup of G? Is inclusion enough?

Thanks.
 
Physics news on Phys.org
I think a subset of a group which is generated by a set of generators is automatically a subgroup. I may be wrong though.
 
I got this one: a necessary and sufficient condition is that every generator of A can be
written as a word in B.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
2
Views
2K
Replies
13
Views
576
Replies
18
Views
2K
Replies
3
Views
442
Replies
7
Views
2K
Replies
2
Views
2K
Replies
6
Views
3K
Replies
3
Views
2K
Back
Top