- #1
csc2iffy
- 76
- 0
Homework Statement
U={(x1,x2,x3)[itex]\in[/itex]ℝ3 | x1+x2=0}
Is this a linear subspace of ℝ3?
Homework Equations
x1+x2=0
The Attempt at a Solution
I know that in order to be a linear subspace, it must be closed under addition and scalar multiplication. I'm just not really sure how to incorporate the x1+x2=0. This is what I've done:
x=(x1,x2,x3), y=(y1,y2,y3)
x+y=(x1,x2,x3)+(y1,y2,y3)=(x1+y1, x2+y2, x3+y3)
but how does this relate to x1+x2=0? there is no "x1+x2" to check... Confused please help!
Edit:
Do I simply just show this?
(x1+y1)+(x2+y2)=
(x1+x2)+(y1+y2)=0+0=0 (closed under addition)
cx=c(x1,x2,x3)=(cx1,cx2,cx3)
(cx1+cx2)=
c(x1+x2)=c(0)=0 (closed under scalar multiplication)
So it is a subspace?
Last edited: