Determining Molar Absorptivity of Iron-Dye Complex at 660nm

  • Thread starter Thread starter scantor145
  • Start date Start date
AI Thread Summary
To determine the molar absorptivity of an iron-dye complex at 660nm using a UV-VIS spectrophotometer, prepare two solutions: an acidic buffer with Chromazurol B and ferric chloride, and a second solution with a neutral buffer to adjust pH. The concentration of the chromophore must be known precisely, and baseline corrected absorbance measurements should be taken across a range of concentrations to plot absorbance versus concentration. The slope of this linear fit will provide the extinction coefficient, which is the molar absorptivity multiplied by the path length. Consider the stability of Fe(II) in relation to pH, as it oxidizes above pH 4, and ensure absorbance measurements fall within the optimal range of 0.1-1.0 AU for accurate results.
scantor145
Messages
4
Reaction score
0
I need help in devising a procedure to determine the molar absorptivity of an iron-dye complex in two solutions at a wavelength of 660nm. I have a UV-VIS spectrophotometer.

Solution 1 is an acidic buffer (R1) containing the iron-binding dye Chromazurol B and ferric chloride. Some amount of an iron standard will be added to this solution, hopefully forming a colored complex with the dye.

Solution 2 is Solution 1 with the addition of a neutral buffer (R2) raising the pH. I believe the molar absorptivity will change under varying pH. Accounting for dilution of Solution 1 would have to be taken into account.

The ratios of the volumes of iron standard to R1 to R2 are 16:200:60.
 
Chemistry news on Phys.org
You need to know the concentration of your chromophore precisely (level of precision depends on needs/goals of course). Get a baseline corrected absorbance measurement at the λmax for a range of concentrations. Plot absorbance as a function of concentration. Do a linear least squares fit. According to the Beer-Lambert Law, the slope of this line is the extinction coefficient (molar absorptivity) mulitplied by the path length.

A very simple procedure. The most difficult part most times is being able to know the concentration of the analyte very precisely.

Also why would you add Iron to solution 1 if you already have ferric chloride? Do you need to add Fe(II) for the complex to form?

Also why not just make a new solution 2 instead of diluting with buffer? If the extinction coefficient is not so high, you may dilute the analyte below a measurable absorbance.

Typically you want to measure absorbances between 0.1-1.0 AU (and your calibration curve should cover atleast that much range), but this depends on the instrument you are using.

I just thought of another thing, if you are indeed using Fe(II) in aqueous solutions, you need to keep the pH pretty acidic. Fe(II) is not very stable above ~pH 4 (IIRC), quickly oxidizes to Fe(III) and precipitates out as rust. Chelators help to stop this but pH affects chelation depending on what you are using. Just a few things off the top of my head for you to keep in mind.
 
Last edited:
It seems like a simple enough question: what is the solubility of epsom salt in water at 20°C? A graph or table showing how it varies with temperature would be a bonus. But upon searching the internet I have been unable to determine this with confidence. Wikipedia gives the value of 113g/100ml. But other sources disagree and I can't find a definitive source for the information. I even asked chatgpt but it couldn't be sure either. I thought, naively, that this would be easy to look up without...
I was introduced to the Octet Rule recently and make me wonder, why does 8 valence electrons or a full p orbital always make an element inert? What is so special with a full p orbital? Like take Calcium for an example, its outer orbital is filled but its only the s orbital thats filled so its still reactive not so much as the Alkaline metals but still pretty reactive. Can someone explain it to me? Thanks!!
Back
Top