Determining Thevenin Equiv. Circuit & R Load for Max Power Transfer

  • Thread starter Thread starter airkapp
  • Start date Start date
  • Tags Tags
    Circuit
AI Thread Summary
To determine the Thevenin equivalent circuit, the current source is opened and the voltage sources are shorted, allowing for the calculation of the equivalent resistance, which is found to be 13.85 ohms. The Thevenin voltage is calculated using superposition, yielding a voltage of 1.85V across the load resistor when the load is removed. For maximum power transfer, the load resistance (RLOAD) should equal the Thevenin resistance, confirming RLOAD as 13.85 ohms. The discussion also addresses confusion regarding the exclusion of resistor R1 in calculations, clarified by noting that no current flows through R1 when the current source is disabled. The conversation includes a query about inputting RLOAD into Multisim.
airkapp
Messages
58
Reaction score
0
I'm trying to determine the Thevenin equivalent circuit for the attached circuit. Also, the value of the load resistance R load for maximum power transfer. I'm not to sure how exactly the Thevenin theorem operates but I simply added my resistor in series and parallel (where appropriate). I suppose that gave me "R equivalence" which equaled 15 ohms. Not sure if that is correct after shorting out the voltages and open the currents (zeroing out). Can someone help figure the "load resistance for max. power transfer?" I'm attaching the diagram here.

thanks,
air
 

Attachments

Engineering news on Phys.org
The Thevenin resistance is easy to find, you disable the current (turn it into an open circuit) and voltage sources (turn it into a short circuit), and then find the equivalent resistance across RLOAD (removing the resistor RLOAD itself of course). So you get Rt = R2 // R3 = (20^-1 + 45^-1)^-1 = 13.85 ohm.

To find the Thevenin voltage, one way is to find the open circuit voltage across where RLOAD (again RLOAD itself is removed), by using superposition. The voltage across RLOAD due to the current source only is 0 (the disabled voltage source provides a path directly to ground). The across RLOAD due to the voltage source is 20/65 * 6 V = 1.85V (by voltage division).

The value of RLOAD for maximum power transfer equal to the Thevenin resistance, which is 13.85 ohms.
 
s_a said:
The Thevenin resistance is easy to find, you disable the current (turn it into an open circuit) and voltage sources (turn it into a short circuit), and then find the equivalent resistance across RLOAD (removing the resistor RLOAD itself of course). So you get Rt = R2 // R3 = (20^-1 + 45^-1)^-1 = 13.85 ohm.

To find the Thevenin voltage, one way is to find the open circuit voltage across where RLOAD (again RLOAD itself is removed), by using superposition. The voltage across RLOAD due to the current source only is 0 (the disabled voltage source provides a path directly to ground). The across RLOAD due to the voltage source is 20/65 * 6 V = 1.85V (by voltage division).

The value of RLOAD for maximum power transfer equal to the Thevenin resistance, which is 13.85 ohms.

okay, I understand what you did, but I do not understand why you ignored the R1 value? Also, do you know how to input RLOAD into multisim?

thanks,
Air
 
airkapp said:
okay, I understand what you did, but I do not understand why you ignored the R1 value? Also, do you know how to input RLOAD into multisim?

thanks,
Air

When you open the current source, no current flows through R1, so it can be dismissed from the calculations of Rt and Vt.
 
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
I am not an electrical engineering student, but a lowly apprentice electrician. I learn both on the job and also take classes for my apprenticeship. I recently wired my first transformer and I understand that the neutral and ground are bonded together in the transformer or in the service. What I don't understand is, if the neutral is a current carrying conductor, which is then bonded to the ground conductor, why does current only flow back to its source and not on the ground path...
Back
Top