Determining what values a function converges at

  • Thread starter Thread starter nigba
  • Start date Start date
  • Tags Tags
    Function
nigba
Messages
1
Reaction score
0

Homework Statement


For what values of p and q does the integral

dx / (x^p * (ln(x))^q) from 1 to infinity
WN86r.gif


converge?

Homework Equations


integration


The Attempt at a Solution


I have no idea how to start figuring this out. I've tried trig substitutions but can't find something that actually makes progress.
 
Physics news on Phys.org
You don't need to actually evaluate the integral of (find a primitive of) x^{-p} \log^{-q} x for generic p and q. Instead, compare the growth behavior of this function to simpler functions whose integrals you know converge or diverge, and try to find critical values of p and q where the behavior changes.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top