DPMachine
- 26
- 0
Homework Statement
Let F be the set of all functions f mapping R into R that have derivatives of all orders. Determine whether p is an isomorphism of the first binary structure with the second.
1. <F, +> with <R, +> where p(f) = f'(0)
2. <F, +> with <F, +> where p(f)(x) = \int^{x}_{0} f(t)dt
3. <F, +> with <F, +> where p(f)(x) = d/dx \int^{x}_{0} f(t)dt
4. <F, \cdot> with <F, \cdot> where p(f)(x) = x \cdot f(x)
Homework Equations
The Attempt at a Solution
Some ideas I have:I think #1 is false, since f=x and f=x+1 can have the same derivative at 0. Isomorphism requires that p be bijective.
#3 is true. Simplifying gives p(f)(x)=f(t) for all f in F and x in R.
I'm not so sure about #2, and #4... The book says they are both false, but I don't really understand it. I'd appreciate any hints/suggestions.