Deviations from the Ideal Gas Equation

  • Thread starter Thread starter doggieslover
  • Start date Start date
  • Tags Tags
    Gas Ideal gas
AI Thread Summary
The discussion focuses on the limitations of the ideal gas equation, which assumes gas molecules have no volume and ignores intermolecular interactions. These assumptions are corrected by the van der Waals equation, which incorporates empirical constants specific to different gases. For carbon dioxide, the constants are a=0.364 J·m³/mol² and b=4.27 x 10^-5 m³/mol. Participants clarify that the ideal gas equation should be used for Part A of the problem, while the van der Waals equation is applicable for Part B. Accurate application of these equations is crucial for determining the correct pressure values for the gas.
doggieslover
Messages
34
Reaction score
0
The derivation of the ideal gas equation employs two assumptions that are invalid for real gas molecules. First, the equation assumes that the molecules of the gas have no volume, which is not true for real molecules. Since the molecules will have some physical volume, the volume that the gas molecules occupy will be increased by the volume that the molecules occupy at rest. In addition, the equation ignores any interactions among the molecules. However, such interactions were first observed in the 19th century by J. D. van der Waals. He realized that, because of the intermolecular forces in the gas, there is a small but measurable attraction among the molecules, which will reduce the pressure of the gas on the walls of the container. To correct for these two deviations from an ideal gas, the van der Waals equation gives

(p+\frac{an^{2}}{V^{2}})(V-nb)=nRT,
where a and b are empirical constants, which are different for different gasses.

For carbon dioxide gas (\rm{CO_{2}}), the constants in the van der Waals equation are a=0.364\;{\rm J \cdot m^{3}/mol^{2}} and b=4.27 \times 10^{-5}\;{\rm m^{3}/mol}.
Part A
If 1.00 {\rm mol} of \rm{CO_{2}} gas at 350 {\rm K} is confined to a volume of 400 {\rm cm^{3}}, find the pressure p_ideal of the gas using the ideal gas equation.
Express your answer numerically in pascals.

Okay I set up the problem as p= [nRT/(V-nb)] - [(an^2)/V^2], using R = 8.314472m^3Pa/Kmol, V= 4*10^-4 I plugged everything in, and I got 8.14*10^6Pa, but it's incorrect, I'm not sure what I did wrong.

Part B
Find the pressure p_vdW of the gas using the van der Waals equation.
Express your answer numerically in pascals.
 
Physics news on Phys.org
Hi doggieslover,

doggieslover said:
The derivation of the ideal gas equation employs two assumptions that are invalid for real gas molecules. First, the equation assumes that the molecules of the gas have no volume, which is not true for real molecules. Since the molecules will have some physical volume, the volume that the gas molecules occupy will be increased by the volume that the molecules occupy at rest. In addition, the equation ignores any interactions among the molecules. However, such interactions were first observed in the 19th century by J. D. van der Waals. He realized that, because of the intermolecular forces in the gas, there is a small but measurable attraction among the molecules, which will reduce the pressure of the gas on the walls of the container. To correct for these two deviations from an ideal gas, the van der Waals equation gives

(p+\frac{an^{2}}{V^{2}})(V-nb)=nRT,
where a and b are empirical constants, which are different for different gasses.

For carbon dioxide gas (\rm{CO_{2}}), the constants in the van der Waals equation are a=0.364\;{\rm J \cdot m^{3}/mol^{2}} and b=4.27 \times 10^{-5}\;{\rm m^{3}/mol}.
Part A
If 1.00 {\rm mol} of \rm{CO_{2}} gas at 350 {\rm K} is confined to a volume of 400 {\rm cm^{3}}, find the pressure p_ideal of the gas using the ideal gas equation.
Express your answer numerically in pascals.

Okay I set up the problem as p= [nRT/(V-nb)] - [(an^2)/V^2], using R = 8.314472m^3Pa/Kmol, V= 4*10^-4 I plugged everything in, and I got 8.14*10^6Pa, but it's incorrect, I'm not sure what I did wrong.



For part A they are asking for the pressure if the gas were an ideal gas; so you need to use the ideal gas equation, not the van der Waals gas equation. (In part B they ask for the pressure assuming it's a van der Waals gas.)
 
Oh yeah I read the question wrong, I got it now, thanks.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top