Ted123
- 428
- 0
Homework Statement
[PLAIN]http://img530.imageshack.us/img530/6672/linn.jpg
The Attempt at a Solution
For parts (a) and (b) I've found the eigenvalues to be -\frac{1}{3} and -1 with corresponding eigenvectors \begin{bmatrix} -1 \\ 3 \end{bmatrix} and \begin{bmatrix} -1 \\ 1 \end{bmatrix} respectively.
Now for part (c) I know there is a way of solving this by diagonalising matrices but I can't remember the method.
The recurrence relation can be written as \begin{bmatrix} a_n \\ a_{n-1} \end{bmatrix} = \begin{bmatrix} -\frac{4}{3} & -\frac{1}{3} \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a_{n-1} \\ a_{n-2} \end{bmatrix}
We can diagonalise A = \begin{bmatrix} -\frac{4}{3} & -\frac{1}{3} \\ 1 & 0 \end{bmatrix} by:
letting D = \begin{bmatrix} -\frac{1}{3} & 0 \\ 0 & -1 \end{bmatrix} and P = \begin{bmatrix} -1 & -1 \\ 3 & 1 \end{bmatrix} so that we have A= PDP^{-1}
Now how do I find a_n from here?
Last edited by a moderator: