Diagonalising Matrices / Recurrence Relations

Ted123
Messages
428
Reaction score
0

Homework Statement



[PLAIN]http://img530.imageshack.us/img530/6672/linn.jpg

The Attempt at a Solution



For parts (a) and (b) I've found the eigenvalues to be -\frac{1}{3} and -1 with corresponding eigenvectors \begin{bmatrix} -1 \\ 3 \end{bmatrix} and \begin{bmatrix} -1 \\ 1 \end{bmatrix} respectively.

Now for part (c) I know there is a way of solving this by diagonalising matrices but I can't remember the method.

The recurrence relation can be written as \begin{bmatrix} a_n \\ a_{n-1} \end{bmatrix} = \begin{bmatrix} -\frac{4}{3} & -\frac{1}{3} \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a_{n-1} \\ a_{n-2} \end{bmatrix}

We can diagonalise A = \begin{bmatrix} -\frac{4}{3} & -\frac{1}{3} \\ 1 & 0 \end{bmatrix} by:

letting D = \begin{bmatrix} -\frac{1}{3} & 0 \\ 0 & -1 \end{bmatrix} and P = \begin{bmatrix} -1 & -1 \\ 3 & 1 \end{bmatrix} so that we have A= PDP^{-1}

Now how do I find a_n from here?
 
Last edited by a moderator:
Physics news on Phys.org
I'll give a hint:

\left( \begin{array}{c} a_n\\ a_{n-1} \end{array}\right)=\left( \begin{array}{cc} -\frac{4}{3} & -\frac{1}{3}\\ 1 & 0 \end{array}\right)\left( \begin{array}{c} a_{n-1}\\ a_{n-2} \end{array}\right)=\left( \begin{array}{cc} -\frac{4}{3} & -\frac{1}{3}\\ 1 & 0 \end{array}\right)^2\left( \begin{array}{c} a_{n-2}\\ a_{n-3} \end{array}\right)=??\left( \begin{array}{c} a_1\\ a_0 \end{array}\right)
 
micromass said:
I'll give a hint:

\left( \begin{array}{c} a_n\\ a_{n-1} \end{array}\right)=\left( \begin{array}{cc} -\frac{4}{3} & -\frac{1}{3}\\ 1 & 0 \end{array}\right)\left( \begin{array}{c} a_{n-1}\\ a_{n-2} \end{array}\right)=\left( \begin{array}{cc} -\frac{4}{3} & -\frac{1}{3}\\ 1 & 0 \end{array}\right)^2\left( \begin{array}{c} a_{n-2}\\ a_{n-3} \end{array}\right)=??\left( \begin{array}{c} a_1\\ a_0 \end{array}\right)

\begin{bmatrix} a_n \\ a_{n-1} \end{bmatrix} = A^{n-1} \begin{bmatrix} a_1 \\ a_0 \end{bmatrix}

so how do I use the diagonalisation? EDIT: I see...
 
Last edited:
You use the diagonalization to calculate A^{n-1}. For example

A^3=(PDP^{-1})(PDP^{-1})(PDP^{-1})=PD^3P^{-1}
 
micromass said:
You use the diagonalization to calculate A^{n-1}. For example

A^3=(PDP^{-1})(PDP^{-1})(PDP^{-1})=PD^3P^{-1}

I get \begin{bmatrix} a_n \\ a_{n-1} \end{bmatrix} = \begin{bmatrix} -\frac{1}{3}\left( -\frac{1}{3} \right) ^{n-1} + (-1)^{n-1} \\ \left( -\frac{1}{3} \right) ^{n-1} - (-1)^{n-1} \end{bmatrix}

Reading off the top component, is this the same as the printed formula?
 
Well, it requires some reworking. But it's the same thing. So it looks like you've solved it!
 
micromass said:
Well, it requires some reworking. But it's the same thing. So it looks like you've solved it!

There's actually a further part to the question:

[PLAIN]http://img703.imageshack.us/img703/273/lin0.jpg

After multiplying through how do I 'compare coefficients'?
 
Last edited by a moderator:
What happens if you multiply

(x^2+4x+3)(a_0+a_1x+a_2x^2+a_3x^3+...)

Multiply these things out. What you get, should be equal to x.
 
micromass said:
What happens if you multiply

(x^2+4x+3)(a_0+a_1x+a_2x^2+a_3x^3+...)

Multiply these things out. What you get, should be equal to x.

This gives:

2x = 3a_0 + (4a_0 + 3a_1)x + (a_0 + 4a_1 + 3a_2)x^2 + (a_1 +4a_2 +3a_3)x^3 + (a_2 +4a_3)x^4 + a_3x^5 + \cdots

If we equate coefficients we see that

3a_0 = 0 \Rightarrow a_0 = 0

4a_0 + 3a_1 = 2 \Rightarrow 3a_1 = 2 \Rightarrow a_1 = \frac{2}{3}

I could keep going forever but how do I show that the coefficients satisfy the recurrence relation?
 
  • #10
In general, what will the coefficient of xn be? You'll see your recurrence relation popping up...
 
  • #11
micromass said:
In general, what will the coefficient of xn be? You'll see your recurrence relation popping up...

In general the coefficient of x^n is 3a_n + 4a_{n-1} + a_{n-2}

How does the link with the recurrence relation?
 
  • #12
Yes. So what does an equal?
 
  • #13
micromass said:
Yes. So what does an equal?

Well for n\in \mathbb{N} \backslash \{1\} ,

3a_n + 4a_{n-1} + a_{n-2} = 0

so a_n = -\frac{4}{3} a_{n-1} - \frac{1}{3} a_{n-2}

which is precisely the recurrence relation!
 
Last edited:
  • #14
Ted123 said:
Well for n\in \mathbb{N} \backslash \{1\} ,

3a_n + 4a_{n-1} + a_{n-2} = 0

so a_n = -\frac{4}{3} a_{n-1} - \frac{1}{3} a_{n-2}

which is precisely the recurrence relation!

The characteristic polynomial is given by

c_A (\lambda ) = \begin{vmatrix} \displaystyle -\frac{4}{3} - \lambda & \displaystyle -\frac{1}{3} \\ 1 & -\lambda \end{vmatrix} =0

\Rightarrow (-\frac{4}{3} - \lambda ) \left(-\lambda \right) - ( -\frac{1}{3} ) ( 1) = 0

\displaystyle \Rightarrow \frac{4}{3} \lambda + \lambda ^2 + \frac{1}{3} = 0

\displaystyle \Rightarrow 3\lambda ^2 + 4\lambda + 1=0

\displaystyle \Rightarrow (3\lambda +1)(\lambda +1)=0

\displaystyle \Rightarrow \lambda = -\frac{1}{3} or \lambda = -1

\displaystyle \therefore -\frac{1}{3} and -1 are eigenvalues of A

The eigenvectors

\begin{bmatrix} x \\ y \end{bmatrix} of A with eigenvalue -1/3 satisfy the vector equation

\begin{bmatrix} -1 & -\frac{1}{3} \\ 1 & \frac{1}{3} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}

which is equivalent to the single linear equation x = -\frac{y}{3}

Hence the eigenvectors of A with eigenvalue -1/3 are \begin{bmatrix} -\frac{y}{3} \\ y \end{bmatrix} where y \neq 0
 
Last edited:
  • #15
Ted123 said:
The characteristic polynomial is given by

c_A (\lambda ) = \begin{vmatrix} \displaystyle -\frac{4}{3} - \lambda & \displaystyle -\frac{1}{3} \\ 1 & -\lambda \end{vmatrix} =0

\Rightarrow (-\frac{4}{3} - \lambda ) \left(-\lambda \right) - ( -\frac{1}{3} ) ( 1) = 0

\displaystyle \Rightarrow \frac{4}{3} \lambda + \lambda ^2 + \frac{1}{3} = 0

\displaystyle \Rightarrow 3\lambda ^2 + 4\lambda + 1=0

\displaystyle \Rightarrow (3\lambda +1)(\lambda +1)=0

\displaystyle \Rightarrow \lambda = -\frac{1}{3} or \lambda = -1

\displaystyle \therefore -\frac{1}{3} and -1 are eigenvalues of A

The eigenvectors

\begin{bmatrix} x \\ y \end{bmatrix} of A with eigenvalue -1/3 satisfy the vector equation

\begin{bmatrix} -1 & -\frac{1}{3} \\ 1 & \frac{1}{3} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}

which is equivalent to the single linear equation x = -\frac{y}{3}

Hence the eigenvectors of A with eigenvalue -1/3 are \begin{bmatrix} -\frac{y}{3} \\ y \end{bmatrix} where y \neq 0

Then

AP = \begin{bmatrix} -\frac{4}{3} & -\frac{1}{3} \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & -1 \\ 3 & 1 \end{bmatrix}= \begin{bmatrix} \frac{1}{3} & 1 \\ -1 & -1 \end{bmatrix}

and

PD = \begin{bmatrix} -1 & -1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -\frac{1}{3} & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & 1 \\ -1 & -1 \end{bmatrix}

and P is invertible since \text{det}(P) = (-1)(1) - (-1)(3) - -1+3=2 \neq 0

Now \begin{bmatrix} a_n \\ a_{n-1} \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -\frac{1}{3} & 0 \\ 0 & -1 \end{bmatrix} ^{n-1} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{3}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} a_1 \\ a_0 \end{bmatrix}

= \begin{bmatrix} a_n \\ a_{n-1} \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} (-\frac{1}{3})^{n-1} & 0 \\ 0 & (-1)^{n-1} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{3}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{2}{3} \\ 0 \end{bmatrix}

= \begin{bmatrix} a_n \\ a_{n-1} \end{bmatrix} = \begin{bmatrix} -(-\frac{1}{3})^{n-1} & -(-1)^{n-1} \\ 3(-\frac{1}{3})^{n-1} & (-1)^{n-1} \end{bmatrix} \begin{bmatrix} \frac{1}{3} \\ -1 \end{bmatrix}

\begin{bmatrix} a_n \\ a_{n-1} \end{bmatrix} = \begin{bmatrix} -\frac{1}{3} ( -\frac{1}{3} ) ^{n-1} + (-1)^{n-1} \\ ( -\frac{1}{3} ) ^{n-1} - (-1)^{n-1} \end{bmatrix}

Reading off the top component we see that a_n = -\frac{1}{3} ( -\frac{1}{3} ) ^{n-1} + (-1)^{n-1}

a_n = -\frac{1}{3} ( -\frac{1}{3} ) ^n ( -\frac{1}{3} ) ^{-1} + (-1)^n (-1)^{-1}

a_n = ( -\frac{1}{3} ) ^n - (-1)^n

a_n = \frac{(-1)^n}{3^n} - (-1)^n

a_n = (-1)^n \left( \frac{1}{3^n} - 1 \right)
 
Last edited:
  • #16
{\bf p}(t) = (f(t)\cos\,t,f(t)\sin\,t)

{\bf p}'(t) = (f'(t)\cos\,t - f(t)\sin\,t , f'(t)\sin\,t + f(t) \cos\,t)

\displaystyle \oint_C -\frac{y}{x^2+y^2} \; dx + \frac{x}{x^2+y^2} \; dy

\displaystyle = \int^{\pi}_{-\pi} \left( -\frac{y}{x^2+y^2} \frac{dx}{dt} + \frac{x}{x^2+y^2} \frac{dy}{dt} \right) \; dt

\displaystyle = \int^{\pi}_{-\pi} \bigg \{ \left( -\frac{f(t)\sin\,t}{f^2(t)\cos^2 \, t} + f^2(t) \sin^2 \, t \right) \left( f'(t) \cos \, t - f(t)\sin \, t \right)

+ \left( \frac{f(t)\cos \, t}{f^2(t)\cos^2 \, t} + f^2(t) \sin^2 \, t \right) \left( f'(t)\sin \, t + f(t)\cos \, t \right) \bigg \} \; dt

\displaystyle = \int^{\pi}_{-\pi} \left( -\frac{f(t)f'(t) \sin\,t\cos\,t}{f^2(t)} + \frac{f^2(t)\sin^2 t}{f^2(t)} + \frac{f(t)f'(t) \sin\,t\cos\,t}{f^2(t)} + \frac{f^2(t)\cos^2 t}{f^2(t)} \right) \;dt

\displaystyle = \int^{\pi}_{-\pi} \left( \sin^2 t + \cos^2 t \right) \;dt

\displaystyle = \int^{\pi}_{-\pi} \;dt = \left[ t \right]^{\pi}_{-\pi} = 2\pi

----------------------------------------------------------------------------------------------------------------------

2(a) Call the 3 sections of the curve C in the order described in the question C_1, C_2 ,C_3 respectively.

Then \displaystyle \int_C = \int_{C_1+C_2+C_3} = \int_{C_1} + \int_{C_2} + \int_{C_3}

So parametrising C_1 , C_2 , C_3 as follows,

C_1 : For 0 \leq t \leq 1\;,\;p(t) = (1-t)(0,0) + t(R,0) = (tR,0)

p'(t) = (R,0)

C_2 : For 0 \leq t \leq \frac{\pi}{2}\;,\;p(t) = (R\cos\,t , R\sin\,t)

p'(t) = (-R\sin\,t , R\cos\,t)

C_3 : For 0 \leq t \leq 1\;,\;p(t) = (1-t)(0,R) + t(0,0) = (0,R-Rt)

p'(t) = (0,-R)

Hence \displaystyle \int_{C_1} = \int_{C_1} \left( -xy^2 \frac{dx}{dt} + x^2y \frac{dy}{dt} \right)\;dt

\displaystyle = \int^1_0 \bigg \{ (-tR)(0)(R) + (R^2)(0)(0) \bigg \}\;dt = 0

\displaystyle \int_{C_2} = \int^{\frac{\pi}{2}}_0 \bigg \{ (-R\cos\,t)(R^2\sin\,t)(-R\sin\,t) + (R^2\cos^2t)(R\sin\,t)(R\cos\,t) \bigg \} \;dt

\displaystyle = R^4 \int^{\frac{\pi}{2}}_0 \left( \cos\,t\,\sin^3t + \sin\,t\,\cos^3\,t \right) \;dt

\displaystyle = R^4 \left( \frac{1}{4} + \frac{1}{4} \right) = \frac{R^4}{2}

\displaystyle \int_{C_3} = \int^1_0 \bigg \{ (0)\left( (R-Rt)^2 \right)(0) + (0)(R-Rt)(-R) \bigg \} \;dt =0

Hence \displaystyle \int_C = 0 + \frac{R^4}{2} + 0 = \frac{R^4}{2}

\sin^3\,t and \cos^3\,t

2(b) Let P = -xy^2 and Q = x^2y

Then Green's theorem says that \displaystyle \oint_C P\;dx + Q\;dy = \iint_S \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \;dxdy

So (calling the integral I) \displaystyle I = \iint_S (2xy + 2xy) \;dxdy = \iint_S 4xy\;dxdy
 
Last edited:
Back
Top