Why Is My Matrix Not Diagonal After Transformation?

LagrangeEuler
Messages
711
Reaction score
22

Homework Statement


Form unitary matrix from eigen vectors of ##\sigma_y## and using that unitary matrix diagonalize ##\sigma_y##.
<br /> \sigma_y=<br /> \begin{bmatrix}<br /> 0 &amp; -i &amp; \\<br /> i &amp; 0 &amp; \\<br /> <br /> \end{bmatrix}[/B]

Homework Equations


Eigen vectors of ##\sigma_y## are
<br /> \vec{X}_1=\frac{1}{\sqrt{2}}<br /> \begin{bmatrix}<br /> 1 \\<br /> i \\<br /> <br /> \end{bmatrix}
and
<br /> \vec{X}_2=\frac{1}{\sqrt{2}}<br /> \begin{bmatrix}<br /> 1 \\<br /> -i \\<br /> <br /> \end{bmatrix}

The Attempt at a Solution


I am not sure, where I am making a mistake. Unitary matrix ##U## is defined by
<br /> U=\frac{1}{\sqrt{2}}<br /> \begin{bmatrix}<br /> 1 &amp; 1 &amp; \\<br /> i &amp; -i &amp; \\<br /> <br /> \end{bmatrix}
whereas
<br /> U^{\dagger}=\frac{1}{\sqrt{2}}<br /> \begin{bmatrix}<br /> 1 &amp; -i &amp; \\<br /> 1 &amp; i &amp; \\<br /> <br /> \end{bmatrix}.
And somehow

##U \sigma_y U^{\dagger}##
is not diagonal. Is there any explanation? Where I am making a mistake?



[/B]
 
Physics news on Phys.org
LagrangeEuler said:
##U \sigma_y U^{\dagger}##
is not diagonal. Is there any explanation? Where I am making a mistake?

If ##U## is formed from the eigenvectors of ##\sigma_y##, then ##U^\dagger \sigma_y U## will be diagonal, not ##U \sigma_y U^\dagger##

In general, let ##A## be a square matrix, and let ##u_1##, ##u_2## etc. be eigenvectors with eigenvalues ##\lambda_1##, ##\lambda_2##, etc. Then let ##U## be the matrix formed by sticking the eigenvectors together: ##U = \left( \begin{array}\\ u_1 & u_2 & ...\end{array} \right)##. Then ##A U## will be the matrix

##A U = \left( \begin{array}\\ \lambda_1 u_1 & \lambda_2 u_2 & ...\end{array} \right)##.

Then ##U^\dagger## will be the matrix ##U^\dagger = \left( \begin{array}\\ u_1^\dagger \\ u_2^\dagger \\ . \\ . \\. \end{array} \right)##

So since ##u_n^\dagger u_m = 0## or ##1##, depending on whether ##n=m##, you will have:

##U^\dagger A U## will be the matrix ##U^\dagger = \left( \begin{array}\\ \lambda_1 & 0 & ...\\ 0 & \lambda_2 & 0 & ... \\ 0 & 0 & \lambda_3 & ... \\ . \\. \end{array} \right)##
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top