- 4,796
- 32
Hello matrix gurus,
Is is true that if A is real with A²=I (eigenvalues ±1), it is diagonalizable over R?
What if I add that A is in O(m,m), where O(m,m) is the split indefinite orthogonal group of 2m x 2m matrices M such that M^TI_{m,m}M=I_{m,m}, where I_{m,m} is the block diagonal matrix diag(I_m,-I_m) for I_m the m x m identity matrix?
Thanks
Is is true that if A is real with A²=I (eigenvalues ±1), it is diagonalizable over R?
What if I add that A is in O(m,m), where O(m,m) is the split indefinite orthogonal group of 2m x 2m matrices M such that M^TI_{m,m}M=I_{m,m}, where I_{m,m} is the block diagonal matrix diag(I_m,-I_m) for I_m the m x m identity matrix?
Thanks
Last edited: