PsychoDash
- 16
- 1
Homework Statement
Consider the following Hamiltonian.
H=\begin{pmatrix} 20 & 1 & 0 \\1 & 20 & 2 \\0 & 2 & 30 \end{pmatrix}<br />
Diagonalize this matrix using perturbation theory. Obtain eigenvectors (to first order) and eigenvalues (to second order).
Ho=\begin{pmatrix} 20 & 0 & 0 \\0 & 20 & 0 \\0 & 0 & 30 \end{pmatrix}<br />
H'=\begin{pmatrix} 0 & 1 & 0 \\1 & 0 & 2 \\0 & 2 & 0 \end{pmatrix}<br />
Homework Equations
The Attempt at a Solution
In general, diagonalizing a matrix involves finding its eigenvalues and then writing the eigenvalues on the diagonal with zeros elsewhere. Despite that, I'm just not sure how to approach this question.