Diamond oxidation -- covalent bonds

  • Thread starter Thread starter PatrickP2
  • Start date Start date
  • Tags Tags
    Bonds Oxidation
Click For Summary
To oxidize a diamond, the covalent bonds must be broken, which occurs when diamond is heated in the presence of air. At 150 degrees Celsius, diamond can oxidize to carbon dioxide (CO2), but the activation energy required for this reaction is 220 kJ/mol. Calculations using the Arrhenius equation indicate that at 140 degrees Celsius, the reaction would take an impractically long time—approximately 480 million years—before any noticeable effects occur. Therefore, heating a diamond at this temperature is insufficient for oxidation to take place within a reasonable timeframe. The discussion highlights the significant energy barrier for diamond oxidation and the long duration required for any observable reaction at lower temperatures.
PatrickP2
Messages
16
Reaction score
2
In order for a diamond to oxidize, do the covalent bonds have to be broken? What would happen if I put the diamond in an oven heated to 150 degrees Celcius? Would the reaction start and after some time the stone would disappear?
 
Chemistry news on Phys.org
No idea if 150°C will be enough, but yes, diamond heated in the air oxidizes to CO2.
 
I did a little research and found a study on the oxidation of diamond. It shows that the activation energy is 220 kJ/mol, while the pre-exponential factor is 4.3×10^11 per second. I used the Arrhenius equation and calculated that at 140 C the reaction would take place after 480 million years. I don't know if my reasoning is right, because I have little to do with chemistry and physics, but it seems that 140 C in the oven is not enough after all. :D

Here's the equation I used:
https://www.wolframalpha.com/input?...iusEquation",+"A1"}+->"4.3×10^11++per+second"
 
PatrickP2 said:
the reaction would take place after 480 million years

No idea how they define the characteristic time, typically it would be something like half life, so it is not like "reaction takes place after", more like "after comparable time effects of the reaction are obvious".

PatrickP2 said:
it seems that 140 C in the oven is not enough after all. :D

Obviously depends on how long you can wait :wink:
 
  • Haha
  • Like
Likes Vanadium 50 and PatrickP2
I caught the tail end of a video about a new application for treating chemical or process waste, which is applied to 'red' mud or contaminated bauxite residue, but the person of interest mention recovering critical minerals from consumer electronics, as well as treating mine tailings and processing ores of rare earth elements. What I found so far is the following: New electrical flash method rapidly purifies red mud into strong ceramics, aluminum feedstock...

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 5 ·
Replies
5
Views
4K
Replies
15
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K