unscientific
- 1,728
- 13
Homework Statement
Part (a): Using grand canonical distribution, show ideal gas law ##P = nkT## holds, where ##n = \frac{\overline{N}}{V}##.
Part (b): Find chemical potential of diatomic classical ideal gas in terms of ##P## and ##T##. The rotational levels are excited, but not the vibrational. Mass of each molecule is ##m##, separation is ##r##.
Homework Equations
The Attempt at a Solution
Part(a)
Z = \sum_{N=0}^{\infty} e^{\beta \mu N} Z_N = \sum_{N=0}^{\infty}\frac{1}{N!} \left( \frac{Ve^{\beta \mu}}{\lambda_{th}^3}\right)
Where ##Z_N = \frac{1}{N!} (\frac{V}{\lambda_{th}^3})^N## and ##\beta = \frac{1}{kT}##.
Z = exp \left( \frac{Ve^{\beta \mu}}{\lambda_{th}^3}\right)
Starting with Gibb's Entropy, where probability ##P_i = \frac{e^{-\beta(E_i - \mu N_i)}}{Z}##
S = -k \sum_i P_i ln(P_i)
S = -k \sum_i P_i \left[ -\beta (E_i - \mu N_i) - ln Z\right]
S = \frac{U}{T} - \frac{1}{T}\mu N + k ln Z
Grand Potential is defined as ##\Phi_G = -kT ln (Z)##.
\Phi_G = U - TS - \mu N
d\Phi_G = -SdT - pdV - Nd\mu
To prove the ideal gas law, we must find a relation between P, V and T. We do this using grand potential.
Starting:
P = -\left( \frac{\partial \Phi_G}{\partial V} \right)_{T,\mu}
N = -\left( \frac{\partial \Phi_G}{\partial \mu} \right)_{V,T}
Then by differentiating, I showed that ##PV = NkT##.
Part(b)
Attempt #1: Using grand partition function
We must first find the rotational partition function. Energies are given by ##E_a = \frac{\hbar ^2}{2I}j(j+1)##.
Z_{rot} = \sum (2j+1) e^{-\beta(E_j -\mu N)}
Converting sum into integral:
\int_0^{\infty} (2j+1) e^{-j(j+1)\frac{\theta_{rot}}{T}} dj \int_0^{\infty} e^{-\beta \mu N} dN
Z_{rot} = \frac{2I}{\hbar \mu} (kT)^2
Together:
Z = Z_{rot}Z_{trans} = \frac{2I}{\hbar \mu} (\frac{1}{\beta})^2 exp \left( \frac{Ve^{\beta \mu}}{\lambda_{th}^3}\right)
ln Z = ln(\frac{2I}{\hbar \mu}) - 2ln (\frac{1}{\beta}) + Z_1 e^{\beta \mu}Gibbs Potential ##\Phi_G = -kt ln (Z) = -\frac{1}{\beta} ln (Z)##
\Phi_G = \frac{1}{\beta} ln \frac{2I}{\hbar \mu} - \frac{1}{\beta} ln(\frac{1}{\beta}) + \frac{1}{\beta} Z_1 e^{\beta \mu}
Using ##N = -(\frac{\partial \Phi_G}{\partial \mu})_{V,T}##:
N = -\frac{1}{\beta \mu} + Z_1 e^{\beta \mu}Attempt #2: Using single-particle partition function
Z = Z_{rot}Z_{trans}
Translational one-particle Partition Function:
Z_{trans} = \int e^{-\beta E} g_{(\vec{k})} d^3\vec{k} = \frac{V}{\lambda_{th}^3}
Rotational one-particle Partition Function:
Z_{rot} = \sum (2j+1)e^{-j(j+1)\frac{\theta_{rot}}{T}}
where ##\theta_{rot} = \frac{\hbar^2}{2Ik}##
Converting sum into integral:
Z_{rot} = \frac{T}{\theta_{rot}}
Together, the total partition function is:
Z = Z_{rot}Z_{trans} = \frac{V}{\lambda_{th}^3}\frac{T}{\theta_{rot}}
To find ##\mu = -\left(\frac{\partial F}{\partial N}\right)_{T,V}##, how do I find ##F## from partition function ##Z##?
Last edited: