I Did I Make a Mistake in my Coordinates? Help Needed!

Shafia Zahin
Messages
31
Reaction score
1
In the attached pic,it is shown that the coordinates of point B are (a cos theta, a sin theta) ,but shouldn't it be (-a cos theta,a sin theta)? Can anybody please help?
 

Attachments

  • IMG_20170614_142305.jpg
    IMG_20170614_142305.jpg
    55 KB · Views: 513
Mathematics news on Phys.org
No there is nothing wrong with the labeling of the coordinates in the diagram. Recall that ##\cos \theta## is negative for ##\pi/2 < \theta < 3\pi/2## (or what you may know as the second and third quadrants).
 
  • Like
Likes WWGD
Fightfish said:
No there is nothing wrong with the labeling of the coordinates in the diagram. Recall that ##\cos \theta## is negative for ##\pi/2 < \theta < 3\pi/2## (or what you may know as the second and third quadrants).
But didn't it come like this?(see the attachment)
 

Attachments

  • IMG_20170614_144504.jpg
    IMG_20170614_144504.jpg
    38.2 KB · Views: 453
When you did the triangle construction in your diagram, you treated ##x## there as a length, which only takes on positive values, but ignored its position relative to where the origin was defined. So, the x-coordinate of the point should in fact be the negative of the ##x## in your derivation.
 
Fightfish said:
When you did the triangle construction in your diagram, you treated ##x## there as a length, which only takes on positive values, but ignored its position relative to where the origin was defined. So, the x-coordinate of the point should in fact be the negative of the ##x## in your derivation.
Oh,now I got it,thank you so much:smile:
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top