Did I Simplify These Boolean Expressions Correctly?

  • Thread starter Thread starter DopplerFX
  • Start date Start date
AI Thread Summary
The discussion focuses on the simplification of two Boolean expressions, with the first expression being simplified to E = A'B'C'D' + A'C + BC + ABC. The second expression is simplified to E = A'(C' + BC). Participants confirm that while the simplifications are correct, further reductions are possible. The conversation emphasizes the use of Boolean algebra rules such as absorption and distribution to achieve these simplifications. Overall, the thread highlights the iterative nature of Boolean expression simplification and encourages further refinement of the results.
DopplerFX
Messages
2
Reaction score
0
I'm trying to simplify 2 boolean expressions. Have I done it correctly and how would I simplify these further if possible. Thank you in advance! :)

Relevant Equations:

(Associativity of +)
A+(B+C) = (A+B)+C​
(Associativity of x)
A*(B*C) = (A*B)*C​
(Commutativity of +)
A+B = B+A​
(Commutativity of x)
A*B = B*A​
(Distributivity of x over +)
A*(B+C) = (A*B)+(A*C)​
(Identity for +)
A+0 = A​
(Identity for x)
A*1 = A​
(Annihilator for x)
A*0 = 0​


(Idempotence of +)
A+A = A​
(Idempotence of x)
A*A = A​
(Absorption 1)
A*(A+B) = A​
(Absorption 2)
A+(A*B) = A​
(Distributivity of + over x)
A+(B*C) = (A+B)*(A+C)​
(Annihilator for +)
A+1 = 1​

This is the first expression:
E = A'B'C'D' + A'B'CD' + A'B'CD + A'BC'D' + A'BC'D + A'BCD' + A'BCD + ABC'D' + ABC'D + ABCD' + ABCD

Here is my working:
E = A'B'C'D' + A'B'CD' + A'B'CD + A'BC'D' + A'BC'D + A'BCD' + A'BCD + ABC'D' + ABC'D + ABCD' + ABCD
E = A'B'C'D' + (D' + D) A'B'C + (D' + D)A'BC' + (D' + D)A'BC + (D' + D)ABC' + (D' + D)ABC
E = A'B'C'D' + (1) A'B'C + (1)A'BC' + (1)A'BC + (1)ABC' + (1)ABC
E = A'B'C'D' + A'B'C + A'BC' + A'BC + ABC' + ABC
E = A'B'C'D' + (B' + B)A'C + (A' + A)BC' + ABC
E = A'B'C'D' + (1)A'C + (1)BC' + ABC
E = A'B'C'D' + A'C + BC' + ABC

This is the second expression:
E = A'B'C'D' + A'B'C'D + A'BC'D' + A'BC'D + A'BCD' + A'BCD

Here is my working:
E = A'B'C'D' + A'B'C'D + A'BC'D' + A'BC'D + A'BCD' + A'BCD
E = B'(A'C'D' + A'C'D) + B(A'C'D' + A'C'D) + A'BCD' + A'BCD
E = (B' + B)(A'C'D' + A'C'D) + A'BCD' + A'BCD
E = (1)(A'C'D' + A'C'D) + A'BCD' + A'BCD
E = (A'C'D' + A'C'D) + A'BCD' + A'BCD
E = A'C'D' + A'C'D + (D' + D)A'BC
E = A'C'D' + A'C'D + (1)A'BC
E = A'C'D' + A'C'D + A'BC
E = (D' + D)A'C' + A'BC
E = (1)A'C' + A'BC
E = A'C' + A'BC
E = A'(C' + BC)
 
Last edited:
Physics news on Phys.org
Looks good to me.
 
DopplerFX said:
E = A'(C' + BC)
You are not finished yet! This can be further simplified.

The same holds for your earlier working.
 
Back
Top