Did i solve this integral correctly: S xln(1+x)dx

  • Thread starter Thread starter vande060
  • Start date Start date
  • Tags Tags
    Integral
vande060
Messages
180
Reaction score
0

Homework Statement



S xln(1+x)dx



Homework Equations





The Attempt at a Solution



S xln(1+x)dx

t = (1+x)
dt = dx
x = t-1

S (t-1)ln(t)dt

u = ln(t)
du = 1/t
dv = (t-1)dt
v =( t^2/2 - t)

uv - S vdu

ln(t)*( t^2/2 - t) - S ( t^2/2 - t)*1/t dt

distributing and solving integral

ln(t)*t^2/2 - ln(t)*t - (t^2/4 - t)

now putting the expression for t back in gives me something radically different from what the book tells me it is

my answer ln(1+x)*[(1+x)^2]/2 - ln(x+1)*(x+1) - [(1+x)^2]/4 - (x+1) + C

the books answer : 1/2*(x^2 - 1)*ln(x+1) - 1/4*x^2 + 1/2*x +3/4 + C


where have i gone wrong
 
Physics news on Phys.org
hi vande060! :smile:

(have an integral: ∫ and try using the X2 icon just above the Reply box :wink:)
vande060 said:
my answer ln(1+x)*[(1+x)^2]/2 - ln(x+1)*(x+1) - [(1+x)^2]/4 - (x+1) + C

the books answer : 1/2*(x^2 - 1)*ln(x+1) - 1/4*x^2 + 1/2*x +3/4 + C

erm :redface:they're the same! :biggrin:

(except your -(x+1) should be +(x+1))
 
tiny-tim said:
hi vande060! :smile:

(have an integral: ∫ and try using the X2 icon just above the Reply box :wink:)


erm :redface:they're the same! :biggrin:

(except your -(x+1) should be +(x+1))


thanks for the conformation, the algebra got the best of me this time
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top