vande060
- 180
- 0
Homework Statement
S xln(1+x)dx
Homework Equations
The Attempt at a Solution
S xln(1+x)dx
t = (1+x)
dt = dx
x = t-1
S (t-1)ln(t)dt
u = ln(t)
du = 1/t
dv = (t-1)dt
v =( t^2/2 - t)
uv - S vdu
ln(t)*( t^2/2 - t) - S ( t^2/2 - t)*1/t dt
distributing and solving integral
ln(t)*t^2/2 - ln(t)*t - (t^2/4 - t)
now putting the expression for t back in gives me something radically different from what the book tells me it is
my answer ln(1+x)*[(1+x)^2]/2 - ln(x+1)*(x+1) - [(1+x)^2]/4 - (x+1) + C
the books answer : 1/2*(x^2 - 1)*ln(x+1) - 1/4*x^2 + 1/2*x +3/4 + C
where have i gone wrong