Dielectric function with band theory

taishizhiqiu
Messages
61
Reaction score
4
As far as I am concerned, dielectric function can be computed by band structure. However, band structure is a global property of solids, while dielectric function is a local property. How a local property can be computed from a global property.

Put it another way, if I want to calculate dielectric function for a specific point(for example, on the surface or deep in the bulk), how can I do it with band structure? Or there is a concept called local band structure?
 
Physics news on Phys.org
The calculation of a dielectric function for non-translationally invariant systems is very complicated as it will depend on both r and r' as ##D(r)=\int dr' \epsilon(r,r') E(r')##(dependence on omega understood) and cannot be done from a bulk band structure. For a point inside the bulk, epsilon will only depend on the distance (r-r') and this dependence decays normally rapidly to zero on a distance of the order of the atomic or lattice spacing.
Fourier transforming gives ##\epsilon(k)## which can be calculated using the k-dependent Bloch states. The macroscopic dielectric constant which is usually reported is epsilon(k=0).
 
DrDu said:
The calculation of a dielectric function for non-translationally invariant systems is very complicated as it will depend on both r and r' as ##D(r)=\int dr' \epsilon(r,r') E(r')##(dependence on omega understood) and cannot be done from a bulk band structure. For a point inside the bulk, epsilon will only depend on the distance (r-r') and this dependence decays normally rapidly to zero on a distance of the order of the atomic or lattice spacing.
Fourier transforming gives ##\epsilon(k)## which can be calculated using the k-dependent Bloch states. The macroscopic dielectric constant which is usually reported is epsilon(k=0).
Can you provide me with some literature?
 
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top