Diff.equation transformation by change of variables

TheMercury79
Messages
24
Reaction score
5

Homework Statement



The assignment is to transform the following differential equation: ##x^2\frac {\partial^2 z} {\partial x^2}-2xy\frac {\partial^2 z} {\partial x\partial y}+y^2\frac {\partial^2 z} {\partial y^2}=0##
by changing the variables: ##u=xy~~~~~~y=\frac 1 v##

Homework Equations


Implicit differentiation in multivariable calculus

The Attempt at a Solution


I have added a photo showing the steps of how I got to a solution. But to sum up I ended up with these
expressions for the partials:$$x^2\frac {\partial^2 z} {\partial x^2}=u^2\frac {\partial^2 z} {\partial u^2}+v^2\frac {\partial^2 z} {\partial v^2}$$$$2xy\frac {\partial^2 z} {\partial x\partial y}=2u\frac {\partial z} {\partial u}+2u^2\frac {\partial^2 z} {\partial u^2}-4v\frac {\partial z} {\partial v}-2v^2\frac {\partial^2 z} {\partial v^2}$$$$y^2\frac {\partial^2 z} {\partial y^2}=u\frac {\partial z} {\partial u}+u^2\frac {\partial^2 z} {\partial u^2}+2v\frac {\partial z} {\partial v}+v^2\frac {\partial^2 z} {\partial v^2}$$

Putting them together gives the transformation:##~~~~~4v^2\frac {\partial^2 z} {\partial v^2}+6v\frac {\partial z} {\partial v}-u\frac {\partial z} {\partial u}=0##

I'm feeling a little insecure about this because I expected the second partials to vanish completely, but the second partial with respect to v did not. And furthermore, I assumed equality of mixed partials, so when I also, just to be certain, compared the two mixed partials ##\frac {\partial^2 z} {\partial x\partial y}## and ##\frac {\partial^2 z} {\partial y\partial x}##, I found out they are not equal, which also worries me a bit. But then again ##\frac 1 y## or ##\frac 1 v## and their derivatives are not continuous everywhere so it might not be a problem? I'm just not sure if I have done the whole thing right and appreciate any feedback on this. See the attached photo below for a detailed solution attempt.

Thanks in advance.

IMG_0491.JPG
 

Attachments

  • IMG_0491.JPG
    IMG_0491.JPG
    54.9 KB · Views: 289
Physics news on Phys.org
I think there's is a problem in how I have used the product rule when taking second partials.
Tried again by taking second partials directly without variables and arrived at:
$$2v^2\frac {\partial^2 z} {\partial v^2}+v\frac {\partial z} {\partial v}-u\frac {\partial z} {\partial u}=0$$

Which I'm somewhat more satisfied with, but wouldn't mind if anyone confirms it.
 
Last edited:
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top